81 research outputs found

    What Makes a Great [Mobile | Digital] Art Exhibition?

    Get PDF
    Passive reception and consumption of art is a given, in our times. Artists produce. Spectators consume. At the nexus stands the curator who chooses the product and the exhibitor who provides the space for consumers. This natural hierarchy also tends to colonize the digital space. But, in the digital world, much of the functioning of the hierarchy has become democratised. The meeting place of exhibited art moved from the physical to the virtual online. Not everyone can visit, say, Istanbul Modern museum. It ought to be possible in principle for everyone to be able to visit “Istanbul Modern Digital” museum. The next stage of digital democracy, already upon us since early 2010, is the mobile art lover, mobile in the sense of being free from being tied down in one place and being able to choose what to see, where to be, and when to do it: early morning, late at night; in the plane, on the train, in bed, in class. Learning is for everyone. It is what makes us human, to continue to learn. Learning takes place best when one is active. In the context of the Mobile Digital Art Exhibition, we have explored ways in which to enhance the experience of the curator as “everyman” and everyman has potentially the opportunity to construct a mobile digital art exhibition, even one such as the “Museum of Innocence” in the manner as described by Orhan Pamuk. Our hero in this story is the self-curator

    Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis.

    Get PDF
    Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues were also shown to be nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis

    Modelling Nitrous Oxide Emissions from Grazed Grasslands in New Zealand

    Get PDF
    Spatial and temporal variability are major difficulties when quantifying annual N2O fluxes at the field scale. New Zealand currently relies on the IPCC default methodology (National Inventory Report, 2004). This methodology is too simplistic and generalised as it ignores all site-specific controls, but is also not sufficiently flexible to allow mitigation options to be assessed. Therefore, a more robust, process-based approach is required to quantify N2O emissions more accurately at the field level. Denitrification-decomposition (DNDC) is a process-based model originally developed (Li et al., 1992) to quantify agricultural nitrous oxide (N2O) emissions across climatic zones, soil types, and management regimes. This has been modified to represent New Zealand grazed grassland systems (Saggar et al., 2004). More recent modifications include measured biomass C and N parameters in perennial pasture and compaction impacts on the soil water dynamics. Further validation tests have been conducted against observed soil moisture and gas fluxes. Here we i) assess the ability of a modified DNDC model NZ-DNDC to simulate N2O emissions; ii) compare the measured, modelled and IPCCestimated N2O emissions from dairy- and sheep-grazed pastures; and iii) give preliminary results for upscaling the model to provide preliminary regional emissions estimates

    Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?

    Get PDF
    Abstract Pollution is of increasing concern within coastal regions and the prevalence of invasive species is also rising. Yet the impact of invasive species on the distribution and potential trophic transfer of metals has rarely been examined. Within European intertidal areas, the non-native Pacific oyster (Crassostrea gigas) is becoming established, forming reefs and displacing beds of the native blue mussel (Mytilus edulis). The main hypothesis tested is that the spatial pattern of metal accumulation within intertidal habitats will change should the abundance and distribution of C. gigas continue to increase. A comparative analysis of trace metal content (cadmium, lead, copper and zinc) in both species was carried out at four shores in south-east England. Metal concentrations in bivalve and sediment samples were determined after acid digestion by inductively coupled plasma-optical emission spectrometry. Although results showed variation in the quantities of zinc, copper and lead (mg m-2) in the two bivalve species, differences in shell thickness are also likely to influence the feeding behaviour of predators and intake of metals. The availability and potential for trophic transfer of metals within the coastal food web, should Pacific oysters transform intertidal habitats, is discussed

    Lipid-Modulated, Graduated Inhibition of N‑Glycosylation Pathway Priming Suggests Wide Tolerance of ER Proteostasis to Stress

    Get PDF
    Protein N-glycosylation is a cotranslational modification that takes place in the endoplasmic reticulum (ER). Disruption of this process can result in accumulation of misfolded proteins, known as ER stress. In response, the unfolded protein response (UPR) restores proteostasis or responds by controlling cellular fate, including increased expression of activating transcription factor 4 (ATF4) that can lead to apoptosis. The ability to control and manipulate such a stress pathway could find use in relevant therapeutic areas, such as in treating cancerous states in which the native ER stress response is often already perturbed. The first committed step in the N-glycosylation pathway is therefore a target for potential ER stress modulation. Here, using structure-based design, the scaffold of the natural product tunicamycin allows construction of a panel capable of graduated inhibition of DPAGT1 through lipid-substituent-modulated interaction. The development of a quantitative, high-content, cellular immunofluorescence assay allowed precise determination of downstream mechanistic consequences (through the nuclear localization of key proxy transcription factor ATF4 as a readout of resulting ER stress). Only the most potent inhibition of DPAGT1 generates an ER stress response. This suggests that even low-level background biosynthetic flux toward protein glycosylation is sufficient to prevent response to ER stress. Tuned inhibitors of DPAGT1 also now seemingly successfully decouple protein glycosylation from apoptotic response to ER stress, thereby potentially allowing access to cellular states that operate at the extremes of normal ER stress

    Global Research Alliance N2 O chamber methodology guidelines:Introduction, with health and safety considerations

    Get PDF
    Non-steady-state (NSS) chamber techniques have been used for decades to measure nitrous oxide (N₂O) fluxes from agricultural soils. These techniques are widely used because they are relatively inexpensive, easy to adopt, versatile, and adaptable to varying conditions. Much of our current understanding of the drivers of N₂O emissions is based on studies using NSS chambers. These chamber techniques require decisions regarding multiple methodological aspects (e.g., chamber materials and geometry, deployment, sample analysis, and data and statistical analysis), each of which may significantly affect the results. Variation in methodological details can lead to challenges in comparing results between studies and assessment of reliability and uncertainty. Therefore, the New Zealand Government, in support of the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA), funded two international projects to, first, develop standardized guidelines on the use of NSS chamber techniques and, second, refine them based on the most up to date knowledge and methods. This introductory paper summarizes a collection of papers that represent the revised guidelines. Each article summarizes existing knowledge and provides guidance and minimum requirements on chamber design, deployment, sample collection, storage and analysis, automated chambers, flux calculations, statistical analysis, emission factor estimation and data reporting, modeling, and “gap-filling” approaches. The minimum requirements are not meant to be highly prescriptive but instead provide researchers with clear direction on best practices and factors that need to be considered. Health and safety considerations of NSS chamber techniques are also provided with this introductory paper

    Global Research Alliance N2O chamber methodology guidelines : Summary of modeling approaches

    Get PDF
    Acknowledgements Funding for this publication was provided by the New Zealand Government to support the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases. Individual authors work contribute to the following projects for which support has been received: Climate smart use of Norwegian organic soils (MYR, 2017-2022) project funded by the Research Council of Norway (decision no. 281109); Scottish Government's Strategic Research Programme, SuperG (under EU Horizon 2020 programme); DEVIL (NE/M021327/1), Soils-R-GRREAT (NE/P019455/1) and the EU H2020 project under Grant Agreement 774378—Coordination of International Research Cooperation on Soil Carbon Sequestration in Agriculture (CIRCASA); to project J-001793, Science and Technology Branch, Agriculture and Agri-Food Canada; and New Zealand Ministry of Business, Innovation and Employment (MBIE) core funding. Thanks to Alasdair Noble and the anonymous reviewers for helpful comments on a draft of this paper and to Anne Austin for editing services.Peer reviewedPublisher PD

    Measured and Simulated Nitrous Oxide Emissions from Ryegrass- and Ryegrass/White Clover-Based Grasslands in a Moist Temperate Climate

    Get PDF
    There is uncertainty about the potential reduction of soil nitrous oxide (N2O) emission when fertilizer nitrogen (FN) is partially or completely replaced by biological N fixation (BNF) in temperate grassland. The objectives of this study were to 1) investigate the changes in N2O emissions when BNF is used to replace FN in permanent grassland, and 2) evaluate the applicability of the process-based model DNDC to simulate N2O emissions from Irish grasslands. Three grazing treatments were: (i) ryegrass (Lolium perenne) grasslands receiving 226 kg FN ha−1 yr−1 (GG+FN), (ii) ryegrass/white clover (Trifolium repens) grasslands receiving 58 kg FN ha−1 yr−1 (GWC+FN) applied in spring, and (iii) ryegrass/white clover grasslands receiving no FN (GWC-FN). Two background treatments, un-grazed swards with ryegrass only (G–B) or ryegrass/white clover (WC–B), did not receive slurry or FN and the herbage was harvested by mowing. There was no significant difference in annual N2O emissions between G–B (2.38±0.12 kg N ha−1 yr−1 (mean±SE)) and WC-B (2.45±0.85 kg N ha−1 yr−1), indicating that N2O emission due to BNF itself and clover residual decomposition from permanent ryegrass/clover grassland was negligible. N2O emissions were 7.82±1.67, 6.35±1.14 and 6.54±1.70 kg N ha−1 yr−1, respectively, from GG+FN, GWC+FN and GWC-FN. N2O fluxes simulated by DNDC agreed well with the measured values with significant correlation between simulated and measured daily fluxes for the three grazing treatments, but the simulation did not agree very well for the background treatments. DNDC overestimated annual emission by 61% for GG+FN, and underestimated by 45% for GWC-FN, but simulated very well for GWC+FN. Both the measured and simulated results supported that there was a clear reduction of N2O emissions when FN was replaced by BNF

    Characterizing Spatiotemporal Dynamics of Methane Emissions from Rice Paddies in Northeast China from 1990 to 2010

    Get PDF
    BACKGROUND: Rice paddies have been identified as major methane (CH(4)) source induced by human activities. As a major rice production region in Northern China, the rice paddies in the Three-Rivers Plain (TRP) have experienced large changes in spatial distribution over the recent 20 years (from 1990 to 2010). Consequently, accurate estimation and characterization of spatiotemporal patterns of CH₄ emissions from rice paddies has become an pressing issue for assessing the environmental impacts of agroecosystems, and further making GHG mitigation strategies at regional or global levels. METHODOLOGY/PRINCIPAL FINDINGS: Integrating remote sensing mapping with a process-based biogeochemistry model, Denitrification and Decomposition (DNDC), was utilized to quantify the regional CH(4) emissions from the entire rice paddies in study region. Based on site validation and sensitivity tests, geographic information system (GIS) databases with the spatially differentiated input information were constructed to drive DNDC upscaling for its regional simulations. Results showed that (1) The large change in total methane emission that occurred in 2000 and 2010 compared to 1990 is distributed to the explosive growth in amounts of rice planted; (2) the spatial variations in CH₄ fluxes in this study are mainly attributed to the most sensitive factor soil properties, i.e., soil clay fraction and soil organic carbon (SOC) content, and (3) the warming climate could enhance CH₄ emission in the cool paddies. CONCLUSIONS/SIGNIFICANCE: The study concluded that the introduction of remote sensing analysis into the DNDC upscaling has a great capability in timely quantifying the methane emissions from cool paddies with fast land use and cover changes. And also, it confirmed that the northern wetland agroecosystems made great contributions to global greenhouse gas inventory
    corecore