215 research outputs found
Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling
The short-lived Hf-W decay system is a powerful chronometer
for constraining the timing of metal-silicate separation and core formation in
planetesimals and planets. Neutron capture effects on W isotopes, however,
significantly hamper the application of this tool. In order to correct for
neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron
dosimeter. This study applies this method to IAB iron meteorites, in order to
constrain the timing of metal segregation on the IAB parent body. The
W values obtained for the IAB iron meteorites range from -3.61
0.10 to -2.73 0.09. Correlating Pt with
W data yields a pre-neutron capture W of -2.90 0.06. This
corresponds to a metal-silicate separation age of 6.0 0.8 Ma after CAI
for the IAB parent body, and is interpreted to represent a body-wide melting
event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic
break-up and subsequent reassembly of the parent body. Thermal models of the
interior evolution that are consistent with these estimates suggest that the
IAB parent body underwent metal-silicate separation as a result of internal
heating by short-lived radionuclides and accreted at around 1.4 0.1 Ma
after CAIs with a radius of greater than 60 km.Comment: 11 pages, 8 figures, 2 tables; open access article under the CC
BY-NC-ND license (see http://creativecommons.org/licenses/by-nc-nd/4.0/
MIMAC : A micro-tpc matrix for directional detection of dark matter
Directional detection of non-baryonic Dark Matter is a promising search
strategy for discriminating WIMP events from background. However, this strategy
requires both a precise measurement of the energy down to a few keV and 3D
reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC
project has been developed. It is based on a gaseous micro-TPC matrix, filled
with CF4 and CHF3. The first results on low energy nuclear recoils (H, F)
obtained with a low mono-energetic neutron field are presented. The discovery
potential of this search strategy is discussed and illustrated by a realistic
case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for
low energy rare event detection, Paris, France, Dec. 2010. To appear in
Journal of Physic
Biomechanics of predator–prey arms race in lion, zebra, cheetah and impala
The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator–prey pairs, lion–zebra and cheetah–impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator–prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate
Micromegas detector developments for MIMAC
The aim of the MIMAC project is to detect non-baryonic Dark Matter with a
directional TPC. The recent Micromegas efforts towards building a large size
detector will be described, in particular the characterization measurements of
a prototype detector of 10 10 cm with a 2 dimensional readout
plane. Track reconstruction with alpha particles will be shown.Comment: 8 pages, 7 figures Proceedings of the 3rd International conference on
Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10
June 2011; corrections on author affiliation
A {\mu}-TPC detector for the characterization of low energy neutron fields
The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20
MeV for metrological purposes. To be considered as a reference facility,
fluence and energy distributions of neutron fields have to be determined by
primary measurement standards. For this purpose, a micro Time Projection
Chamber is being developed to be dedicated to measure neutron fields with
energy ranging from 8 keV up to 1 MeV. In this work we present simulations
showing that such a detector, which allows the measurement of the ionization
energy and the 3D reconstruction of the recoil nucleus, provides the
determination of neutron energy and fluence of these neutron fields
Dynamics of direct inter-pack encounters in endangered African wild dogs
Aggressive encounters may have important life history consequences due to the potential for injury and death, disease transmission, dispersal opportunities or exclusion from key areas of the home range. Despite this, little is known of their detailed dynamics, mainly due to the difficulties of directly observing encounters in detail. Here, we describe detailed spatial dynamics of inter-pack encounters in African wild dogs (Lycaon pictus), using data from custom-built high-resolution GPS collars in 11 free-ranging packs. On average, each pack encountered another pack approximately every 7 weeks and met each neighbour twice each year. Surprisingly, intruders were more likely to win encounters (winning 78.6% of encounters by remaining closer to the site in the short term). However, intruders did tend to move farther than residents toward their own range core in the short-term (1 h) post-encounter, and if this were used to indicate losing an encounter, then the majority (73.3%) of encounters were won by residents. Surprisingly, relative pack size had little effect on encounter outcome, and injuries were rare (<15% of encounters). These results highlight the difficulty of remotely scoring encounters involving mobile participants away from static defendable food resources. Although inter-pack range overlap was reduced following an encounter, encounter outcome did not seem to drive this, as both packs shifted their ranges post-encounter. Our results indicate that inter-pack encounters may be lower risk than previously suggested and do not appear to influence long-term movement and ranging
Isotopic Resolution of Fission Fragments from 238U+12C Transfer and Fusion Reactions
Expérience GANILInternational audienceRecent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238U beam and a 12C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments
Search for a long lived component in the reaction U+U near the Coulomb barrier
Expérience GANILInternational audienceWe performed an experiment to search for a signature of a long living component in the collision of U + U between 6.09 and 7.35A MeV. The experiment was performed at GANIL using the spectrometer VAMOS, tuned for observing reactions with kinematics similar to fusion-fission events. Theoretical calculations indicate that if a long living component would exist for this reaction, the most probable fission channel of such a giant system would be via the emissionof quasi-lead nuclei. We detected events of such a category in the focal plane of VAMOS. These events present an excitation function growing as a function of the bombarding energy
Study of Sn+Xe fusion-evaporation: analysis of a rare-event experiment
7 pages, 4 figuresFusion-evaporation in the Sn+Xe system is studied using a high intensity xenon beam provided by the Ganil accelerator and the LISE3 wien filter for the selection of the products. Due to the mass symmetry of the entrance system, the rejection of the beam by the spectrometer was of the order of . We have thus performed a detailed statistical analysis to estimate random events and to infer the fusion-evaporation cross sections. No signicant decay events were detected and upper limit cross sections of 172~pb, 87~pb and 235~pb were deduced for the synthesis of Rf, Rf and Rf, respectively
- …
