1,372 research outputs found

    Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation

    Get PDF
    We present a further theoretical extension to the kinetic theory based formulation of the lattice Boltzmann method of Shan et al (2006). In addition to the higher order projection of the equilibrium distribution function and a sufficiently accurate Gauss-Hermite quadrature in the original formulation, a new regularization procedure is introduced in this paper. This procedure ensures a consistent order of accuracy control over the non-equilibrium contributions in the Galerkin sense. Using this formulation, we construct a specific lattice Boltzmann model that accurately incorporates up to the third order hydrodynamic moments. Numerical evidences demonstrate that the extended model overcomes some major defects existed in the conventionally known lattice Boltzmann models, so that fluid flows at finite Knudsen number (Kn) can be more quantitatively simulated. Results from force-driven Poiseuille flow simulations predict the Knudsen's minimum and the asymptotic behavior of flow flux at large Kn

    Blow-up of the hyperbolic Burgers equation

    Full text link
    The memory effects on microscopic kinetic systems have been sometimes modelled by means of the introduction of second order time derivatives in the macroscopic hydrodynamic equations. One prototypical example is the hyperbolic modification of the Burgers equation, that has been introduced to clarify the interplay of hyperbolicity and nonlinear hydrodynamic evolution. Previous studies suggested the finite time blow-up of this equation, and here we present a rigorous proof of this fact

    Explicit coercivity estimates for the linearized Boltzmann and Landau operators

    Full text link
    We prove explicit coercivity estimates for the linearized Boltzmann and Landau operators, for a general class of interactions including any inverse-power law interactions, and hard spheres. The functional spaces of these coercivity estimates depend on the collision kernel of these operators. They cover the spectral gap estimates for the linearized Boltzmann operator with Maxwell molecules, improve these estimates for hard potentials, and are the first explicit coercivity estimates for soft potentials (including in particular the case of Coulombian interactions). We also prove a regularity property for the linearized Boltzmann operator with non locally integrable collision kernels, and we deduce from it a new proof of the compactness of its resolvent for hard potentials without angular cutoff.Comment: 32 page

    Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method

    Full text link
    We derive a coarse-grained equation of motion of a number density by applying the projection operator method to a non-relativistic model. The derived equation is an integrodifferential equation and contains the memory effect. The equation is consistent with causality and the sum rule associated with the number conservation in the low momentum limit, in contrast to usual acausal diffusion equations given by using the Fick's law. After employing the Markov approximation, we find that the equation has the similar form to the causal diffusion equation. Our result suggests that current-current correlations are not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.

    Real time plasma equilibrium reconstruction in a Tokamak

    Get PDF
    The problem of equilibrium of a plasma in a Tokamak is a free boundary problemdescribed by the Grad-Shafranov equation in axisymmetric configurations. The right hand side of this equation is a non linear source, which represents the toroidal component of the plasma current density. This paper deals with the real time identification of this non linear source from experimental measurements. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation

    Relativistic Dissipative Hydrodynamics: A Minimal Causal Theory

    Get PDF
    We present a new formalism for the theory of relativistic dissipative hydrodynamics. Here, we look for the minimal structure of such a theory which satisfies the covariance and causality by introducing the memory effect in irreversible currents. Our theory has a much simpler structure and thus has several advantages for practical purposes compared to the Israel-Stewart theory (IS). It can readily be applied to the full three-dimensional hydrodynamical calculations. We apply our formalism to the Bjorken model and the results are shown to be analogous to the IS.Comment: 25 pages, 2 figures, Phys. Rev. C in pres

    Entropic force, noncommutative gravity and ungravity

    Full text link
    After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.Comment: 8 pages, final version published on Physical Review

    On the kinetic systems for simple reacting spheres : modeling and linearized equations

    Get PDF
    Series: Springer Proceedings in Mathematics & Statistics, Vol. 75In this work we present some results on the kinetic theory of chemically reacting gases, concerning the model of simple reacting spheres (SRS) for a gaseous mixture undergoing a chemical reaction of type A1 +A2 A3 +A4. Starting from the approach developed in paper [11], we provide properties of the SRS system needed in the mathematical and physical analysis of the model. Our main result in this proceedings provides basic properties of the SRS system linearized around the equilibrium, including the explicit representations of the kernels of the linearized SRS operators.Fundação para a Ciência e a Tecnologia (FCT), PEst-C/MAT/UI0013/2011, SFRH/BD/28795/200

    Quantitative lower bounds for the full Boltzmann equation, Part I: Periodic boundary conditions

    Full text link
    We prove the appearance of an explicit lower bound on the solution to the full Boltzmann equation in the torus for a broad family of collision kernels including in particular long-range interaction models, under the assumption of some uniform bounds on some hydrodynamic quantities. This lower bound is independent of time and space. When the collision kernel satisfies Grad's cutoff assumption, the lower bound is a global Maxwellian and its asymptotic behavior in velocity is optimal, whereas for non-cutoff collision kernels the lower bound we obtain decreases exponentially but faster than the Maxwellian. Our results cover solutions constructed in a spatially homogeneous setting, as well as small-time or close-to-equilibrium solutions to the full Boltzmann equation in the torus. The constants are explicit and depend on the a priori bounds on the solution.Comment: 37 page

    Composition profiles of InAs–GaAs quantum dots determined by medium-energy ion scattering

    Get PDF
    The composition profile along the [001] growth direction of low-growth-rate InAs–GaAs quantum dots (QDs) has been determined using medium-energy ion scattering (MEIS). A linear profile of In concentration from 100% In at the top of the QDs to 20% at their base provides the best fit to MEIS energy spectra
    corecore