57,316 research outputs found
Energy-based Structure Prediction for d(Al70Co20Ni10)
We use energy minimization principles to predict the structure of a decagonal
quasicrystal - d(AlCoNi) - in the Cobalt-rich phase. Monte Carlo methods are
then used to explore configurations while relaxation and molecular dynamics are
used to obtain a more realistic structure once a low energy configuration has
been found. We find five-fold symmetric decagons 12.8 A in diameter as the
characteristic formation of this composition, along with smaller
pseudo-five-fold symmetric clusters filling the spaces between the decagons. We
use our method to make comparisons with a recent experimental approximant
structure model from Sugiyama et al (2002).Comment: 10pp, 2 figure
A practical, unitary simulator for non-Markovian complex processes
Stochastic processes are as ubiquitous throughout the quantitative sciences
as they are notorious for being difficult to simulate and predict. In this
letter we propose a unitary quantum simulator for discrete-time stochastic
processes which requires less internal memory than any classical analogue
throughout the simulation. The simulator's internal memory requirements equal
those of the best previous quantum models. However, in contrast to previous
models it only requires a (small) finite-dimensional Hilbert space. Moreover,
since the simulator operates unitarily throughout, it avoids any unnecessary
information loss. We provide a stepwise construction for simulators for a large
class of stochastic processes hence directly opening the possibility for
experimental implementations with current platforms for quantum computation.
The results are illustrated for an example process.Comment: 12 pages, 5 figure
A new class of -d topological superconductor with topological classification
The classification of topological states of matter depends on spatial
dimension and symmetry class. For non-interacting topological insulators and
superconductors the topological classification is obtained systematically and
nontrivial topological insulators are classified by either integer or .
The classification of interacting topological states of matter is much more
complicated and only special cases are understood. In this paper we study a new
class of topological superconductors in dimensions which has
time-reversal symmetry and a spin conservation symmetry. We
demonstrate that the superconductors in this class is classified by
when electron interaction is considered, while the
classification is without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur
Effective medium approximation and the complex optical properties of the inhomogeneous superconductor K_{0.8}Fe_{2-y}Se_2
The in-plane optical properties of the inhomogeneous iron-chalcogenide
superconductor K_{0.8}Fe_{2-y}Se_2 with a critical temperature Tc = 31 K have
been modeled in the normal state using the Bruggeman effective medium
approximation for metallic inclusions in an insulating matrix. The volume
fraction for the inclusions is estimated to be ~ 10%; however, they appear to
be highly distorted, suggesting a filamentary network of conducting regions
joined through weak links. The value for the Drude plasma frequency in the
inclusions is much larger than the volume average, which when considered with
the reasonably low values for the scattering rate, suggests that the transport
in the grains is always metallic. Estimates for the dc conductivity and the
superfluid density in the grains places the inclusions on the universal scaling
line close to the other homogeneous iron-based superconductors.Comment: 6 pages, 3 figure
Optimal CUR Matrix Decompositions
The CUR decomposition of an matrix finds an
matrix with a subset of columns of together with an matrix with a subset of rows of as well as a
low-rank matrix such that the matrix approximates the matrix
that is, , where
denotes the Frobenius norm and is the best matrix
of rank constructed via the SVD. We present input-sparsity-time and
deterministic algorithms for constructing such a CUR decomposition where
and and rank. Up to constant
factors, our algorithms are simultaneously optimal in and rank.Comment: small revision in lemma 4.
Joint effect of lattice interaction and potential fluctuation in colossal magnetoresistive manganites
Taking into account both the Jahn-Teller lattice distortion and the on-site
electronic potential fluctuations in the orbital-degenerated double-exchange
model, in which both the core-spin and the lattice distortion are treated
classically, we investigate theoretically the metal-insulator transition (MIT)
in manganites by considering the electronic localization effect. An inverse
matrix method is developed for calculation in which we use the inverse of the
transfer matrix to obtain the localization length. We find that within
reasonable range of parameters, both the lattice effect and the potential
fluctuation are responsible to the occurrence of the MIT. The role of the
orbital configuration is also discussed.Comment: 4 figure
- …
