13,111 research outputs found
Self-Consistent Determination of Coupling Shifts in Broken SU(3)
The possibility that certain patterns of SU(3) symmetry breaking are dynamically enhanced in baryon-meson couplings is studied by bootstrap methods. For the strong couplings, a single dominant enhancement is found. It produces very large symmetry-breaking terms, transforming like an octet, as often conjectured. Experimental consequences are listed, such as a reduction of K-baryon couplings relative to π-baryon couplings which is in accord with the experimental weakness of K relative to π production in many circumstances, such as photoproduction and multi-BeV cosmic-ray collisions. For parity-violating nonleptonic couplings, a dominant octet enhancement is again found, as mentioned in a previous paper, which leads to an excellent fit with experiment. For parity-conserving nonleptonic couplings, on the other hand, several different enhancements compete, and the only conclusion we can draw is that terms with the "abnormal" transformation properties brought in by strong symmetry-breaking corrections are present. Our work provides a dynamical derivation of various phenomenological facts associated with SU(6), such as the dominance of the 35 representation in parity-violating nonleptonic decays
The swept angle retarding mass spectrometer: Initial results from the Michigan auroral probe sounding rocket
Data from a sounding rocket flight of the swept angle retarding ion mass spectrometer (SARIMS) are presented to demonstrate the capability of the instrument to make measurements of thermal ions which are differential in angle, energy, and mass. The SARIMS was flown on the Michigan auroral probe over regions characterized first by discrete auroral arcs and later by diffuse precipitation. The instrument measured the temperature, densities, and flow velocities of the ions NO(+) and O(+). Measured NO(+) densities ranged from 10 to the 5th power up to 3 x 10 to the 5th power ions/cu cm, while the measured O(+) densities were a factor of 5-10 less. Ion temperatures ranged from 0.15 up to 0.33 eV. Eastward ion flows approximately 0.5 km/sec were measured near the arcs, and the observed flow magnitude decreased markedly inside the arcs
The Team of Life: A narrative approach to building resilience in UK school children
Concern about children and young people's mental health is high on the UK national agenda. Access to specialist Child and Adolescent Mental Health Services (CAMHS) is perceived as problematic due to high thresholds, clinic-based service delivery and associated stigma. Schools and youth work contexts present alternative and more accessible settings for early intervention and preventative work aimed at promoting positive mental health. The Team of Life is a narrative group methodology with sporting metaphors, which encourages young people to recognise the strength and resilience in their life teams. The approach has been used within diverse contexts internationally, for example with former child soldiers in Uganda, young men from refugee backgrounds and young people in Australian schools. Innovative partnership work between health and education has led to the implementation of the Team of Life in a UK school and the development of a manualised Team of Life Programme. We now report findings from pilot work evaluating feasibility and outcomes for the programme within a UK secondary school setting. Quantitative findings include significant positive change in Goal Based Outcomes as well as significant reductions in emotional and behaviour difficulties measured by the Child Behaviour Checklist. Qualitative thematic analysis of participant feedback indicates benefits relating to the experience of 'shared understanding', 'confidence', 'peer support' and the 'positive impact of sport'. Further research is planned to evaluate the effectiveness on a larger scale. This pilot study was undertaken as part of CAMHS Extended Schools work. Potential for collaboration between clinical and education psychology colleagues in relation to the promotion of positive mental health in schools is discussed
Electrometer system measures nanoamps at high voltage
Floating electrometer eliminates major source of error since any leakage from electrometer case, which is at high voltage, appears only as load on high voltage supply and not as part of current being measured. Commands to and data from floating electrometer are transferred across high voltage interface by means of optical channels
High-concentration Er:YAG single-crystal fibers grown by laser-heated pedestal growth technique
High-concentration Er:YAG single-crystal fibers have been grown using the laser-heated pedestal growth technique. Instability in the melt and concomitant opacity of fibers were observed at source concentrations higher than 15 mol.%. Spectroscopic examination shows that broadening of the linewidth of the I<sub>13/2</sub>4→I<sub>15/2</sub>4 transition is strongly dependent on Er<sup>3+</sup> concentration
Communications technology satellite output-tube design and development
The design and development of a 200-watt-output, traveling-wave tube (TWT) for the Communications Technology Satellite (CTS) is discussed, with emphasis on the design evolution during the manufacturing phase of the development program. Possible further improvements to the tube design are identified
Unsung heroes: who supports social work students on placement?
Since the introduction of the three year degree programme in 2003, social work education has undergone a number of significant changes. The time students spend on placement has been increased to two hundred days, and the range of placement opportunities and the way in which these placements have been configured has significantly diversified. A consistent feature over the years, however, has been the presence of a Practice Educator (PE) who has guided, assessed and taught the student whilst on placement. Unsurprisingly, the role of the PE and the pivotal relationship they have with the student has been explored in the past and features in social work literature.
This paper, however, concentrates on a range of other relationships which are of significance in providing support to students on placement. In particular it draws on research to discuss the role of the university contact tutor, the place of the wider team in which the student is sited, and the support offered by family, friends and others.
Placements and the work undertaken by PE’s will continue to be integral to the delivery of social work education. It is, however, essential to recognise and value the often over looked role of others in providing support to students on placement
Line Intensities and Molecular Opacities of the FeH Transition
We calculate new line lists and opacities for the
transition of FeH. The 0-0 band of this transition is responsible for the
Wing-Ford band seen in M-type stars, sunspots and brown dwarfs. The new
Einstein A values for each line are based on a high level ab initio calculation
of the electronic transition dipole moment. The necessary rotational line
strength factors (H\"onl-London factors) are derived for both the Hund's case
(a) and (b) coupling limits. A new set of spectroscopic constants were derived
from the existing FeH term values for v=0, 1 and 2 levels of the and
states. Using these constants extrapolated term values were generated for v=3
and 4 and for values up to 50.5. The line lists (including Einstein A
values) for the 25 vibrational bands with v4 were generated using a
merged list of experimental and extrapolated term values. The FeH line lists
were use to compute the molecular opacities for a range of temperatures and
pressures encountered in L and M dwarf atmospheres. Good agreement was found
between the computed and observed spectral energy distribution of the L5 dwarf
2MASS-1507.Comment: 52 pages, 3 figures, many tables, accepted for publication in the
Astrophysical Journal Supplement
Detecting structural variances of Co_3O_4 catalysts by controlling beam-induced sample alterations in the vacuum of a transmission electron microscope
This article summarizes core aspects of beam-sample interactions in research that aims at exploiting the ability to detect single atoms at atomic resolution by mid-voltage transmission electron microscopy. Investigating the atomic structure of catalytic Co_3O_4 nanocrystals underscores how indispensable it is to rigorously control electron dose rates and total doses to understand native material properties on this scale. We apply in-line holography with variable dose rates to achieve this goal. Genuine object structures can be maintained if dose rates below ~100 e/Å^2s are used and the contrast required for detection of single atoms is generated by capturing large image series. Threshold doses for the detection of single atoms are estimated. An increase of electron dose rates and total doses to common values for high resolution imaging of solids stimulates object excitations that restructure surfaces, interfaces, and defects and cause grain reorientation or growth. We observe a variety of previously unknown atom configurations in surface proximity of the Co_3O_4 spinel structure. These are hidden behind broadened diffraction patterns in reciprocal space but become visible in real space by solving the phase problem. An exposure of the Co_3O_4 spinel structure to water vapor or other gases induces drastic structure alterations that can be captured in this manner
A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation
Targeting at the development of an accurate and efficient dose calculation
engine for online adaptive radiotherapy, we have implemented a finite size
pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This
new GPU-based dose engine is built on our previously published ultrafast FSPB
computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009].
Dosimetric evaluations against Monte Carlo dose calculations are conducted on
10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all
cases, there is improvement with the 3D-density correction over the
conventional FSPB algorithm and for most cases the improvement is significant.
Regarding the efficiency, because of the appropriate arrangement of memory
access and the usage of GPU intrinsic functions, the dose calculation for an
IMRT plan can be accomplished well within 1 second (except for one case) with
this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB
algorithm without 3D-density correction, this new algorithm, though slightly
sacrificing the computational efficiency (~5-15% lower), has significantly
improved the dose calculation accuracy, making it more suitable for online IMRT
replanning
- …
