4,104 research outputs found
WASP-33: The first delta Scuti exoplanet host star
We report the discovery of photometric oscillations in the host star of the
exoplanet WASP-33 b (HD 15082). The data were obtained in the R band in both
transit and out-of-transit phases from the 0.3-m telescope and the Montcabrer
Observatory and the 0.8-m telescope at the Montsec Astronomical Observatory.
Proper fitting and subsequent removal of the transit signal reveals stellar
photometric variations with a semi-amplitude of about 1 mmag. The detailed
analysis of the periodogram yields a structure of significant signals around a
frequency of 21 cyc per day, which is typical of delta Scuti-type variable
stars. An accurate study of the power spectrum reveals a possible
commensurability with the planet orbital motion with a factor of 26, but this
remains to be confirmed with additional time-series data that will permit the
identification of the significant frequencies. These findings make WASP-33 the
first transiting exoplanet host star with delta Sct variability and a very
interesting candidate to search for star-planet interactions.Comment: 5 pages, 6 figures. Revised version accepted for publication in A&A
Letter
Rotation and Convective Core Overshoot in theta Ophiuchi
(abridged) Recent work on several beta Cephei stars has succeeded in
constraining both their interior rotation profile and their convective core
overshoot. In particular, a recent study focusing on theta$ Oph has shown that
a convective core overshoot parameter of alpha = 0.44 is required to model the
observed pulsation frequencies, significantly higher than for other stars of
this type. We investigate the effects of rotation and overshoot in early type
main sequence pulsators, and attempt to use the low order pulsation frequencies
to constrain these parameters. This will be applied to a few test models and
theta Oph. We use a 2D stellar evolution code and a 2D linear adiabatic
pulsation code to calculate pulsation frequencies for 9.5 Msun models. We
calculate low order p-modes for models with a range of rotation rates and
convective core overshoot parameters. Using these models, we find that the
convective core overshoot has a larger effect on the pulsation frequencies than
the rotation, except in the most rapidly rotating models considered. When the
differences in radii are accounted for by scaling the frequencies, the effects
of rotation diminish, but are not entirely accounted for. We find that
increasing the convective core overshoot decreases the large separation, while
producing a slight increase in the small separations. We created a model
frequency grid which spanned several rotation rates and convective core
overshoot values. Using a modified chi^2 statistic, we are able to recover the
rotation velocity and core overshoot for a few test models. Finally, we discuss
the case of the beta Cephei star theta Oph. Using the observed frequencies and
a fixed mass and metallicity, we find a lower overshoot than previously
determined, with alpha = 0.28 +/- 0.05. Our determination of the rotation rate
agrees well with both previous work and observations, around 30 km/s.Comment: 10 pages, 14 figures. Accepted for publication in A&A
Global stellar variability study in the field-of-view of the Kepler satellite
We present the results of an automated variability analysis of the Kepler
public data measured in the first quarter (Q1) of the mission. In total, about
150 000 light curves have been analysed to detect stellar variability, and to
identify new members of known variability classes. We also focus on the
detection of variables present in eclipsing binary systems, given the important
constraints on stellar fundamental parameters they can provide. The methodology
we use here is based on the automated variability classification pipeline which
was previously developed for and applied successfully to the CoRoT exofield
database and to the limited subset of a few thousand Kepler asteroseismology
light curves. We use a Fourier decomposition of the light curves to describe
their variability behaviour and use the resulting parameters to perform a
supervised classification. Several improvements have been made, including a
separate extractor method to detect the presence of eclipses when other
variability is present in the light curves. We also included two new
variability classes compared to previous work: variables showing signs of
rotational modulation and of activity. Statistics are given on the number of
variables and the number of good candidates per class. A comparison is made
with results obtained for the CoRoT exoplanet data. We present some special
discoveries, including variable stars in eclipsing binary systems. Many new
candidate non-radial pulsators are found, mainly Delta Sct and Gamma Dor stars.
We have studied those samples in more detail by using 2MASS colours. The full
classification results are made available as an online catalogue.Comment: 15 pages, 5 figures, Accepted for publication in Astronomy and
Astrophysics on 09/02/201
Particle decay branching ratios for states of astrophysical importance in 19Ne
We have measured proton and alpha-particle branching ratios of excited states
in 19Ne formed using the 19F(3He,t) reaction at a beam energy of 25 MeV. These
ratios have a large impact on the astrophysical reaction rates of
15O(alpha,gamma), 18F(p,gamma) and 18F(p,alpha), which are of interest in
understanding energy generation in x-ray bursts and in interpreting anticipated
gamma-ray observations of novae. We detect decay protons and alpha-particles
using a silicon detector array in coincidence with tritons measured in the
focal plane detector of our Enge split-pole spectrograph. The silicon array
consists of five strip detectors of the type used in the Louvain-Edinburgh
Detector Array, subtending angles from 130 degrees to 165 degrees with
approximately 14% lab efficiency. The correlation angular distributions give
additional confidence in some prior spin-parity assignments that were based on
gamma branchings. We measure Gamma_p/Gamma=0.387+-0.016 for the 665 keV proton
resonance, which agrees well with the direct measurement of Bardayan et al.Comment: 5 pages, 2 figures, 3 tables. Prepared using RevTex 4 and BibTex.
Further minor revisions, incl. fig. 1 font size increase, 1 table removal,
and minor changes to the tex
Discovery and analysis of p-mode and g-mode oscillations in the A-type primary of the eccentric binary HD 209295
We have discovered both intermediate-order gravity mode and low-order
pressure mode pulsation in the same star, HD 209295. It is therefore both a
Gamma Doradus and a Delta Scuti star, which makes it the first pulsating star
to be a member of two classes.
The star is a single-lined spectroscopic binary with an orbital period of
3.10575 d and an eccentricity of 0.352. Weak pulsational signals are found in
both the radial velocity and line-profile variations, allowing us to show that
the two highest-amplitude Gamma Doradus pulsation modes are consistent with l=1
and |m|=1.
In our 280 h of BVI multi-site photometry we detected ten frequencies in the
light variations, one in the Delta Scuti regime and nine in the Gamma Doradus
domain. Five of the Gamma Doradus frequencies are exact integer multiples of
the orbital frequency. This observation leads us to suspect they are tidally
excited. Results of theoretical modeling (stability analysis, tidal excitation)
were consistent with the observations.
We could not detect the secondary component of the system in infrared
photometry, suggesting that it may not be a main-sequence star. Archival data
of HD 209295 show a strong ultraviolet excess, the origin of which is not
known. The orbit of the primary is consistent with a secondary mass of M > 1.04
Msun indicative of a neutron star or a white dwarf companion.Comment: 18 pages, 18 figures, accepted for publication in MNRAS, shortened
abstrac
Composite Nanomechanics: A Mechanistic Properties Prediction
A unique mechanistic theory is described to predict the properties of nanocomposites. The theory is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to predict 25 properties of a mononanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. Most of the results show smooth distributions. Results for matrix-dependent properties show bimodal through-the-thickness distribution with discontinuous changes from mode to mode
Approximate Micromechanics Treatise of Composite Impact
A formalism is described for micromechanic impact of composites. The formalism consists of numerous equations which describe all aspects of impact from impactor and composite conditions to impact contact, damage progression, and penetration or containment. The formalism is based on through-the-thickness displacement increments simulation which makes it convenient to track local damage in terms of microfailure modes and their respective characteristics. A flow chart is provided to cast the formalism (numerous equations) into a computer code for embedment in composite mechanic codes and/or finite element composite structural analysis
Multiperiodicity in the large-amplitude rapidly-rotating Ceph ei star HD 203664
We perform a seismic study of the young massive Cephei star HD 203664
with the goal to constrain its interior structure. Our study is based on a time
series of 328 new Geneva 7-colour photometric data of the star spread over
496.8 days. The data confirm the frequency of the dominant mode of the star
which we refine to c d. The mode has a large amplitude of
37 mmag in V and is unambiguously identified as a dipole mode () from
its amplitude ratios and non-adiabatic computations. Besides , we discover
two additional new frequencies in the star with amplitudes above :
c d and c d or one of their daily
aliases. The amplitudes of these two modes are only between 3 and 4 mmag which
explains why they were not detected before. Their amplitude ratios are too
uncertain for mode identification. We show that the observed oscillation
spectrum of HD 203664 is compatible with standard stellar models but that we
have insufficient information for asteroseismic inferences. Among the
large-amplitude Cephei stars, HD 203664 stands out as the only one
rotating at a significant fraction of its critical rotation velocity ().Comment: 7 pages, 5 figures, accepted for publication in A&A (Astronomy &
Astrophysics
The effects of moderately fast shellular rotation on adiabatic oscillations
We investigate adiabatic oscillations for delta Scuti star models, taking
into account a moderate rotation velocity ~100 \km/s. The resulting oscillation
frequencies include corrections for rotation up to second order in the rotation
rate including those of near degeneracy. Effects of either a uniform rotation
or a rotation profile assuming local angular momentum conservation of the form
Omega=Omega(r) on oscillation frequencies are compared. As expected, important
differences (around 3 microHz) are obtained in the and mixed mode regions.
For higher frequency p modes, differences range between 1 microHz and 3
microHz. Such differences are likely to be detectable with future space
missions such as COROT, where precisions in frequency around 0.5 microHz will
be reachable.Comment: A&A, in press (18 pag, 14 fig
- …
