7,472 research outputs found

    Stability of continuously pumped atom lasers

    Get PDF
    A multimode model of a continuously pumped atom laser is shown to be unstable below a critical value of the scattering length. Above the critical scattering length, the atom laser reaches a steady state, the stability of which increases with pumping. Below this limit the laser does not reach a steady state. This instability results from the competition between gain and loss for the excited states of the lasing mode. It will determine a fundamental limit for the linewidth of an atom laser beam.Comment: 4 page

    A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer

    Full text link
    This paper presents the first realisation of a simultaneous 87^{87}Rb -85^{85}Rb Mach-Zehnder atom interferometer with Bose-condensed atoms. A number of ambitious proposals for precise terrestrial and space based tests of the Weak Equivalence Principle rely on such a system. This implementation utilises hybrid magnetic-optical trapping to produce spatially overlapped condensates with a duty cycle of 20s. A horizontal optical waveguide with co-linear Bragg beamsplitters and mirrors is used to simultaneously address both isotopes in the interferometer. We observe a non-linear phase shift on a non-interacting 85^{85}Rb interferometer as a function of interferometer time, TT, which we show arises from inter-isotope scattering with the co-incident 87^{87}Rb interferometer. A discussion of implications for future experiments is given.Comment: 7 pages, 5 figures. The authors welcome comments and feedback on this manuscrip

    Classical noise and flux: the limits of multi-state atom lasers

    Get PDF
    By direct comparison between experiment and theory, we show how the classical noise on a multi-state atom laser beam increases with increasing flux. The trade off between classical noise and flux is an important consideration in precision interferometric measurement. We use periodic 10 microsecond radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein condensate. The resulting atom laser beam has suprising structure which is explained using three dimensional simulations of the five state Gross-Pitaevskii equations.Comment: 4 pages, 3 figure

    A multibeam atom laser: coherent atom beam splitting from a single far detuned laser

    Full text link
    We report the experimental realisation of a multibeam atom laser. A single continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via an optical Raman transition. The atom laser is subsequently split into up to five atomic beams with slightly different momenta, resulting in multiple, nearly co-propagating, coherent beams which could be of use in interferometric experiments. The splitting process itself is a novel realization of Bragg diffraction, driven by each of the optical Raman laser beams independently. This presents a significantly simpler implementation of an atomic beam splitter, one of the main elements of coherent atom optics

    Achieving peak brightness in an atom laser

    Get PDF
    In this paper we present experimental results and theory on the first continuous (long pulse) Raman atom laser. The brightness that can be achieved with this system is three orders of magnitude greater than has been previously demonstrated in any other continuously outcoupled atom laser. In addition, the energy linewidth of a continuous atom laser can be made arbitrarily narrow compared to the mean field energy of a trapped condensate. We analyze the flux and brightness of the atom laser with an analytic model that shows excellent agreement with experiment with no adjustable parameters.Comment: 4 pages, 4 black and white figures, submitted to Physical Revie

    Effects of non-denumerable fixed points in finite dynamical systems

    Full text link
    The motion of a spinning football brings forth the possible existence of a whole class of finite dynamical systems where there may be non-denumerably infinite number of fixed points. They defy the very traditional meaning of the fixed point that a point on the fixed point in the phase space should remain there forever, for, a fixed point can evolve as well! Under such considerations one can argue that a free-kicked football should be non-chaotic.Comment: This paper is a replaced version to modify the not-so-true claim, made unknowingly in the earlier version, of being first to propose the peculiar dynamical systems as described in the paper. With respect to the original workers, we present here our original finding

    Statistical Mechanics of Steiner trees

    Get PDF
    The Minimum Weight Steiner Tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows to analyze the statistical mechanics properties of MST on random graphs of various types

    Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup

    Full text link
    Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum projection noise limited performance of a Ramsey type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effects in an atom laser, potentially leading to improved sensitivity in atom interferometers.Comment: 8 pages, 8 figures, published in Phys. Rev.
    corecore