2,470 research outputs found
Recommended from our members
Soft and Hard Implant Fabrication Using 3D-Bioplotting TM
At the Freiburger Materialforschungszentrum we have developed a new process (3DBioplotting
TM) that permits most kind of polymers and biopolymers to be used in 3D scaffold
design, including hydrogels (e.g. collagen, agar), polymer melts (e.g. PLLA, PGA, PCl) and twocomponent systems (e.g. chitosan, fibrin). Cells can be incorporated within the construction
process, making this an ideal Rapid Prototyping technique for Organ Printing. Tailor-made
biodegradable soft or hard scaffolds can so be fabricated in a short time using individual
computer-tomography data from the patient. In-vitro tests showed promising results and in-vivo
experiments are now under observation.Mechanical Engineerin
Freeform Extrusion of High Solids Loading Ceramic Slurries, Part I: Extrusion Process Modeling
A novel solid freeform fabrication method has been developed for the manufacture of
ceramic-based components in an environmentally friendly fashion. The method is based on the
extrusion of ceramic slurries using water as the binding media. Aluminum oxide (Al2O3) is
currently being used as the part material and solids loading as high as 60 vol. % has been
achieved. This paper describes a manufacturing machine that has been developed for the
extrusion of high solids loading ceramic slurries. A critical component of the machine is the
deposition system, which consists of a syringe, a plunger, a ram actuated by a motor that forces
the plunger down to extrude material, and a load cell to measure the extrusion force. An
empirical, dynamic model of the ceramic extrusion process, where the input is the commanded
ram velocity and the output is the extrusion force, is developed. Several experiments are
conducted and empirical modeling techniques are utilized to construct the dynamic model. The
results demonstrate that the ceramic extrusion process has a very slow dynamic response, as
compared to other non-compressible fluids such as water. A substantial amount of variation
exists in the ceramic extrusion process, most notably in the transient dynamics, and a constant
ram velocity may either produce a relatively constant steady-state extrusion force or it may cause
the extrusion force to steadily increase until the ram motor skips. The ceramic extrusion process
is also subjected to significant disturbances such as air bubble release, which causes a dramatic
decrease in the extrusion force, and nozzle clogging, which causes the extrusion force to slowly
increase until the clog is released or the ram motor skips.Mechanical Engineerin
Aqueous-Based Extrusion Fabrication of Ceramics on Demand
Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that
extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The
material reservoir in a previously developed system has been modified to allow for
starting and stopping of the extrusion process on demand. Design pros and cons are
examined and a comparison between two material reservoir designs is made. Tests are
conducted to determine the optimal deposition parameters for starting and stopping the
extrudate on demand. The collected test data is used for the development of a deposition
strategy that improves material deposition consistency, including reduced material
buildup at sharp corners. Example parts are fabricated using the deposition strategy and
hardware design.Mechanical Engineerin
Freeform Extrusion of High Solids Loading Ceramic Slurries, Part II: Extrusion Process Control
Part I of this paper provided a detailed description of a novel fabrication machine for high solids
loading ceramic slurry extrusion and presented an empirical model of the ceramic extrusion
process, with ram velocity as the input and extrusion force as the output. A constant force is
desirable in freeform extrusion processes as it correlates with a constant material deposition rate
and, thus, good part quality. The experimental results in Part I demonstrated that a constant ram
velocity will produce a transient extrusion force. In some instances the extrusion force increased
until ram motor skipping occurred. Further, process disturbances, such as air bubble release and
nozzle clogging that cause sudden changes in extrusion force, were often present. In this paper a
feedback controller for the ceramic extrusion process is designed and experimentally
implemented. The controller intelligently adjusts the ram motor velocity to maintain a constant
extrusion force. Since there is tremendous variability in the extrusion process characteristics, an
on-off controller is utilized in this paper. Comparisons are made between parts fabricated with
and without the feedback control. It is demonstrated that the use of the feedback control reduces
the effect of process disturbances (i.e., air bubble release and nozzle clogging) and dramatically
improves part quality.Mechanical Engineerin
Brood patch and sex-ratio observations indicate breeding provenance and timing in New Zealand storm petrel (Fregetta maoriana)
We used measurements of brood patch and moult status to estimate the breeding phenology of New Zealand Storm-Petrel, using birds caught at sea within the Hauraki Gulf Marine Park near Auckland, New Zealand. Birds caught October–January had completely downy brood patches, whereas birds caught February–April had bare brood patches with an observed male bias in the February sex-ratio, consistent with a female pre-laying exodus typical of petrels and with the existence of an unknown colony in the region. No birds captured exhibited primary moult, which is known to occur in storm-petrels during their non-breeding season. Our data support the conclusion that the New Zealand storm-petrel breeds during January–June in northern New Zealand and that field surveys for the species on offshore islands in this region during this period are warrante
The DRIFT Dark Matter Experiments
The current status of the DRIFT (Directional Recoil Identification From
Tracks) experiment at Boulby Mine is presented, including the latest limits on
the WIMP spin-dependent cross-section from 1.5 kg days of running with a
mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with
ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale
directional Dark Matter detector.Comment: Proceedings of the 3rd International conference on Directional
Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201
- …
