1,867 research outputs found
A First Estimate Of The X-Ray Binary Frequency As A Function Of Star Cluster Mass In A Single Galactic System
We use the previously-identified 15 infrared star-cluster counterparts to
X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to
study the relationship between total cluster mass and X-ray binary number. This
significant population of X-Ray/IR associations allows us to perform, for the
first time, a statistical study of X-ray point sources and their environments.
We define a quantity, \eta, relating the fraction of X-ray sources per unit
mass as a function of cluster mass in the Antennae. We compute cluster mass by
fitting spectral evolutionary models to K_s luminosity. Considering that this
method depends on cluster age, we use four different age distributions to
explore the effects of cluster age on the value of \eta and find it varies by
less than a factor of four. We find a mean value of \eta for these different
distributions of \eta = 1.7 x 10^-8 M_\sun^-1 with \sigma_\eta = 1.2 x 10^-8
M_\sun^-1. Performing a \chi^2 test, we demonstrate \eta could exhibit a
positive slope, but that it depends on the assumed distribution in cluster
ages. While the estimated uncertainties in \eta are factors of a few, we
believe this is the first estimate made of this quantity to ``order of
magnitude'' accuracy. We also compare our findings to theoretical models of
open and globular cluster evolution, incorporating the X-ray binary fraction
per cluster.Comment: 20 pages, 6 figures, accepted by Ap
Far-ultraviolet imaging of the Hubble Deep Field-North: Star formation in normal galaxies at z < 1
We present far-ultraviolet (FUV) imaging of the Hubble Deep Field-North (HDF-N) taken with the Solar Blind Channel of the Advanced Camera for Surveys (ACS SBC) and the FUV MAMA detector of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. The full WFPC2 deep field has been observed at 1600 Å. We detect 134 galaxies and one star down to a limit of FUV_(AB) ~ 29. All sources have counterparts in the WFPC2 image. Redshifts (spectroscopic or photometric) for the detected sources are in the range 0 < z < 1. We find that the FUV galaxy number counts are higher than those reported by GALEX, which we attribute at least in part to cosmic variance in the small HDF-N field of view. Six of the 13 Chandra sources at z < 0.85 in the HDF-N are detected in the FUV, and those are consistent with starbursts rather than active galactic nuclei. Cross-correlating with Spitzer sources in the field, we find that the FUV detections show general agreement with the expected L_(IR)/L_(UV) versus β relationship. We infer star formation rates (SFRs), corrected for extinction using the UV slope, and find a median value of 0.3 M_☉ yr^(-1) for FUV-detected galaxies, with 75% of detected sources having SFR < 1 M_☉ yr^(-1). Examining the morphological distribution of sources, we find that about half of all FUV-detected sources are identified as spiral galaxies. Half of morphologically selected spheroid galaxies at z < 0.85 are detected in the FUV, suggesting that such sources have had significant ongoing star formation in the epoch since z ~ 1
Rotating black hole orbit functionals in the frequency domain
In many astrophysical problems, it is important to understand the behavior of
functions that come from rotating (Kerr) black hole orbits. It can be
particularly useful to work with the frequency domain representation of those
functions, in order to bring out their harmonic dependence upon the fundamental
orbital frequencies of Kerr black holes. Although, as has recently been shown
by W. Schmidt, such a frequency domain representation must exist, the coupled
nature of a black hole orbit's and motions makes it difficult to
construct such a representation in practice. Combining Schmidt's description
with a clever choice of timelike coordinate suggested by Y. Mino, we have
developed a simple procedure that sidesteps this difficulty. One first Fourier
expands all quantities using Mino's time coordinate . In particular,
the observer's time is decomposed with . The frequency domain
description is then built from the -Fourier expansion and the
expansion of . We have found this procedure to be quite simple to implement,
and to be applicable to a wide class of functionals. We test the procedure
using a simple test function, and then apply it in a particularly interesting
case, the Weyl curvature scalar used in black hole perturbation
theory.Comment: 16 pages, 2 figures. Submitted to Phys Rev D. New version gives a
vastly improved algorithm due to Drasco for computing the Fourier transforms.
Drasco has been added as an author. Also fixed some references and
exterminated a small herd of typos; final published versio
Toward a Clean Sample of Ultra-Luminous X-ray Sources
CONTEXT. Observational follow-up programmes for the characterization of
ultra-luminous X-ray sources (ULXs) require the construction of clean samples
of such sources in which the contamination by foreground/background sources is
minimum.
AIMS. In this article we calculate the degree of foreground/background
contaminants among the ULX sample candidates in the Colbert & Ptak (2002)
catalogue and compare these computations with available spectroscopical
identifications.
METHODS. We use statistics based on known densities of X-ray sources and
AGN/QSOs selected in the optical. The analysis is done individually for each
parent galaxy. The existing identifications of the optical counterparts are
compiled from the literature.
RESULTS. More than a half of the ULXs, within twice the distance of the major
axis of the 25 mag/arcsec isophote from RC3 nearby galaxies and with X-ray
luminosities [2-10 keV] erg/s, are expected to be high
redshift background QSOs. A list of 25 objects (clean sample) confirmed to be
real ULXs or to have a low probability of being contaminant
foreground/background objects is provided.Comment: 9 pages, accepted in A&
Brief of Scholars of the History and Original Meaning of the Fourth Amendment as Amici Curiae in Support of Petitioner, Carpenter v. United States, No. 16-402 (U.S. Aug. 14, 2017)
Obtaining and examining cell site location records to find a person is a “search” in any normal sense of the word — a search of documents and a search for a person and her personal effects. It is therefore a “search” within the meaning of the Fourth Amendment in that it constitutes “examining,” “exploring,” “looking through,” “inquiring,” “seeking,” or “trying to find.” Nothing about the text of the Fourth Amendment, or the historical backdrop against which it was adopted, suggests that “search” should be construed more narrowly as, for example, intrusions upon subjectively manifested expectations of privacy that society is prepared to recognize as reasonable.Entrusting government agents with unfettered discretion to conduct searches using cell site location information undermines Fourth Amendment rights. The Amendment guarantees “[t]he right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches.” The Framers chose that language deliberately. It reflected the insecurity they suffered at the hands of “writs of assistance,” a form of general warrant that granted state agents broad discretion to search wherever they pleased. Such arbitrary power was “unreasonable” to the Framers, being “against the reason of the common law,” and it was intolerable because of its oppressive impact on “the people” as a whole. As emphasized in one of the seminal English cases that inspired the Amendment, this kind of general power to search was “totally subversive of the liberty of the subject.” James Otis’s famous speech denouncing a colonial writ of assistance similarly condemned those writs as “the worst instrument of arbitrary power,” placing “the liberty of every man in the hands of every petty officer.” Thus, although those who drafted and ratified the Fourth Amendment could not have anticipated cellphone technology, they would have recognized the dangers inherent in any state claim of unlimited authority to conduct searches for evidence of criminal activity. Cell site location information provides insight into where we go and what we do. Because this information is constantly generated and can be retrieved by the government long after the activities it memorializes have taken place, unfettered government access to cell site location information raises the specter of general searches and undermines the security of “the people.
Application of Absorbing Boundary Condition to Nuclear Breakup Reactions
Absorbing boundary condition approach to nuclear breakup reactions is
investigated. A key ingredient of the method is an absorbing potential outside
the physical area, which simulates the outgoing boundary condition for
scattered waves. After discretizing the radial variables, the problem results
in a linear algebraic equation with a sparse coefficient matrix, to which
efficient iterative methods can be applicable. No virtual state such as
discretized continuum channel needs to be introduced in the method. Basic
aspects of the method are discussed by considering a nuclear two-body
scattering problem described with an optical potential. We then apply the
method to the breakup reactions of deuterons described in a three-body direct
reaction model. Results employing the absorbing boundary condition are found to
accurately coincide with those of the existing method which utilizes
discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX
New Constraints on the Lyman Continuum Escape Fraction at z~1.3
We examine deep far-ultraviolet (1600 Angstrom) imaging of the Hubble Deep
Field-North (HDFN) and the Hubble Ultra Deep Field (HUDF) to search for leaking
Lyman continuum radiation from starburst galaxies at z~1.3. There are 21
(primarily sub-L*) galaxies with spectroscopic redshifts between 1.1<z<1.5 and
none are detected in the far-UV. We fit stellar population templates to the
galaxies' optical/near-infrared SEDs to determine the starburst age and level
of dust attenuation, giving an accurate estimate of the intrinsic Lyman
continuum ratio, f_1500/f_700, and allowing a conversion from f_700 limits to
relative escape fractions. We show that previous high-redshift studies may have
underestimated the amplitude of the Lyman Break, and thus the relative escape
fraction, by a factor of ~2. Once the starburst age and intergalactic HI
absorption are accounted for, 18 galaxies in our sample have limits to the
relative escape fraction, f_esc,rel < 1.0 with some limits as low as f_esc,rel
< 0.10 and a stacked limit of f_esc,rel < 0.08. This demonstrates, for the
first time, that most sub-L* galaxies at high redshift do not have large escape
fractions. When combined with a similar study of more luminous galaxies at the
same redshift we show that, if all star-forming galaxies at z~1 have similar
relative escape fractions, the value must be less than 0.14 (3 sigma). We also
show that less than 20% (3 sigma) of star-forming galaxies at z~1 have relative
escape fractions near unity. These limits contrast with the large escape
fractions found at z~3 and suggest that the average escape fraction has
decreased between z~3 and z~1. (Abridged)Comment: Accepted for publication in ApJ. aastex format. 39 pages, 11 figure
- …
