1,121 research outputs found
The Effect of the Short-Range Correlations on the Generalized Momentum Distribution in Finite Nuclei
The effect of dynamical short-range correlations on the generalized momentum
distribution in the case of , -closed shell
nuclei is investigated by introducing Jastrow-type correlations in the
harmonic-oscillator model. First, a low order approximation is considered and
applied to the nucleus He. Compact analytical expressions are derived and
numerical results are presented and the effect of center-of-mass corrections is
estimated. Next, an approximation is proposed for of
heavier nuclei, that uses the above correlated of He.
Results are presented for the nucleus O. It is found that the effect of
short-range correlations is significant for rather large values of the momenta
and/or and should be included, along with center of mass corrections
for light nuclei, in a reliable evaluation of in the whole
domain of and .Comment: 29 pages, 8 figures. Further results, figures and discussion for the
CM corrections are added. Accepted by Journal of Physics
Final-state interactions in the response of nuclear matter
Final-state interactions in the response of a many-body system to an external
probe delivering large momentum are normally described using the eikonal
approximation, for the trajectory of the struck particle, and the frozen
approximation, for the positions of the spectators. We propose a generalization
of this scheme, in which the initial momentum of the struck particle is
explicitly taken into account. Numerical calculations of the nuclear matter
response at 1 2 GeV/c show that the inclusion of this momentum
dependence leads to a sizable effect in the low energy tail. Possible
implications for the analysis of existing electron-nucleus scattering data are
discussed.Comment: 21 pages, 4 figure
Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays
We report the first reconstruction in hadron collisions of the suppressed
decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the
CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by
the CDF II detector at the Tevatron collider. We reconstruct a signal for the
B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard
deviations, and measure the ratios of the suppressed to favored branching
fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) =
[42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm
2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) =
-0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for
B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for
Publicatio
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
- …
