258 research outputs found
A Spitzer Study of the Mass Loss Histories of Three Bipolar Pre-Planetary Nebulae
We present the results of far-infrared imaging of extended regions around
three bipolar pre-planetary nebulae, AFGL 2688, OH 231.8+4.2, and IRAS
163423814, at 70 and 160 m with the MIPS instrument on the Spitzer
Space Telescope. After a careful subtraction of the point spread function of
the central star from these images, we place constraints on the existence of
extended shells and thus on the mass outflow rates as a function of radial
distance from these stars. We find no apparent extended emission in AFGL 2688
and OH 231.8+4.2 beyond 100 arcseconds from the central source. In the case of
AFGL 2688, this result is inconsistent with a previous report of two extended
dust shells made on the basis of ISO observations. We derive an upper limit of
M yr and M
yr for the dust mass loss rate of AFGL 2688 and OH 231.8, respectively,
at 200 arcseconds from each source. In contrast to these two sources, IRAS
163423814 does show extended emission at both wavelengths, which can be
interpreted as a very large dust shell with a radius of 400 arcseconds
and a thickness of 100 arcseconds, corresponding to 4 pc and 1 pc,
respectively, at a distance of 2 kpc. However, this enhanced emission may also
be galactic cirrus; better azimuthal coverage is necessary for confirmation of
a shell. If the extended emission is a shell, it can be modeled as enhanced
mass outflow at a dust mass outflow rate of M
yr superimposed on a steady outflow with a dust mass outflow rate of
M yr. It is likely that this shell has swept
up a substantial mass of interstellar gas during its expansion, so these
estimates are upper limits to the stellar mass loss rate.Comment: 31 pages, 12 figures, accepted to A
Recombination Line vs. Forbidden Line Abundances in Planetary Nebulae
Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs)
have been found to give abundances that are much larger in some cases than
abundances from collisionally-excited forbidden lines (CELs). The origins of
this abundance discrepancy are highly debated. We present new spectroscopic
observations of O II and C II recombination lines for six planetary nebulae.
With these data we compare the abundances derived from the optical
recombination lines with those determined from collisionally-excited lines.
Combining our new data with published results on RLs in other PNs, we examine
the discrepancy in abundances derived from RLs and CELs. We find that there is
a wide range in the measured abundance discrepancy Delta(O+2) = log O+2(RL) -
log O+2(CEL), ranging from approximately 0.1 dex up to 1.4 dex. Most RLs yield
similar abundances, with the notable exception of O II multiplet V15, known to
arise primarily from dielectronic recombination, which gives abundances
averaging 0.6 dex higher than other O II RLs. We compare Delta(O+2) against a
variety of physical properties of the PNs to look for clues as to the mechanism
responsible for the abundance discrepancy. The strongest correlations are found
with the nebula diameter and the Balmer surface brightness. An inverse
correlation of Delta(O+2) with nebular density is also seen. Similar results
are found for carbon in comparing C II RL abundances with ultraviolet
measurements of C III].Comment: 48 pages, 14 figures, accepted for publication in the Astrophysical
Journal Supplemen
Understanding the PSCz Galaxy Power Spectrum with N-body Simulations
By comparing the PSCz galaxy power spectrum with the results of nested pure
dark matter N-body simulations, we try to understand how infrared-selected
galaxies populate dark-matter haloes, paying special attention to the method of
halo identification in the simulations. We thus test the hypothesis that
baryonic physics negligibly affects the distribution of galaxies down to the
smallest scales yet observed. We are successful in reproducing the PSCz power
spectrum on scales < ~40 h/Mpc, near our resolution limit, by imposing a
central density cut-off on simulated haloes, which gives a rough minimum mass
and circular velocity of haloes in which PSCz galaxies formed.Comment: 12 pages, 16 figures (one added), conforms to version in MNRA
GLIMPSE: I. A SIRTF Legacy Project to Map the Inner Galaxy
GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire), a SIRTF
Legacy Science Program, will be a fully sampled, confusion-limited infrared
survey of the inner two-thirds of the Galactic disk with a pixel resolution of
\~1.2" using the Infrared Array Camera (IRAC) at 3.6, 4.5, 5.8, and 8.0
microns. The survey will cover Galactic latitudes |b| <1 degree and longitudes
|l|=10 to 65 degrees (both sides of the Galactic center). The survey area
contains the outer ends of the Galactic bar, the Galactic molecular ring, and
the inner spiral arms. The GLIMPSE team will process these data to produce a
point source catalog, a point source data archive, and a set of mosaicked
images. We summarize our observing strategy, give details of our data products,
and summarize some of the principal science questions that will be addressed
using GLIMPSE data. Up-to-date documentation, survey progress, and information
on complementary datasets are available on the GLIMPSE web site:
www.astro.wisc.edu/glimpse.Comment: Description of GLIMPSE, a SIRTF Legacy project (Aug 2003 PASP, in
press). Paper with full res.color figures at
http://www.astro.wisc.edu/glimpse/glimpsepubs.htm
The sweet spot in sustainability: a framework for corporate assessment in sugar manufacturing
The assessment of corporate sustainability has become an increasingly important topic, both within academia and in industry. For manufacturing companies to conform to their commitments to sustainable development, a standard and reliable measurement framework is required. There is, however, a lack of sector-specific and empirical research in many areas, including the sugar industry. This paper presents an empirically developed framework for the assessment of corporate sustainability within the Thai sugar industry. Multiple case studies were conducted, and a survey using questionnaires was also employed to enhance the power of generalisation. The developed framework is an accurate and reliable measurement instrument of corporate sustainability, and guidelines to assess qualitative criteria are put forward. The proposed framework can be used for a company’s self-assessment and for guiding practitioners in performance improvement and policy decision-maki
Association of plasma and cortical beta-amyloid is modulated by APOE ε4 status.
Background: APOE ε4’s role as a modulator of the relationship between soluble plasma beta-amyloid (Aβ) and fibrillar brain Aβ measured by Pittsburgh Compound-B positron emission tomography ([11C]PiB PET) has not been assessed. Methods: Ninety-six Alzheimer’s Disease Neuroimaging Initiative participants with [11C]PiB scans and plasma Aβ1-40 and Aβ1-42 measurements at time of scan were included. Regional and voxel-wise analyses of [11C]PiB data were used to determine the influence of APOE ε4 on association of plasma Aβ1-40, Aβ1-42, and Aβ1-40/Aβ1-42 with [11C]PiB uptake. Results: In APOE ε4− but not ε4+ participants, positive relationships between plasma Aβ1-40/Aβ1-42 and [11C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aβ1-40/Aβ1-42 improved the explained variance in [11C]PiB binding compared to using APOE and plasma Aβ1-40/Aβ1-42 as separate terms. Conclusions: The results suggest that plasma Aβ is a potential Alzheimer’s disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aβ levels
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
The Gut Microbiota of Wild Mice
The gut microbiota profoundly affects the biology of its host. The composition of the microbiota is dynamic and is affected by both host genetic and many environmental effects. The gut microbiota of laboratory mice has been studied extensively, which has uncovered many of the effects that the microbiota can have. This work has also shown that the environments of different research institutions can affect the mouse microbiota. There has been relatively limited study of the microbiota of wild mice, but this has shown that it typically differs from that of laboratory mice (and that maintaining wild caught mice in the laboratory can quite quickly alter the microbiota). There is also inter-individual variation in the microbiota of wild mice, with this principally explained by geographical location. In this study we have characterised the gut (both the caecum and rectum) microbiota of wild caught Mus musculus domesticus at three UK sites and have investigated how the microbiota varies depending on host location and host characteristics. We find that the microbiota of these mice are generally consistent with those described from other wild mice. The rectal and caecal microbiotas of individual mice are generally more similar to each other, than they are to the microbiota of other individuals. We found significant differences in the diversity of the microbiotas among mice from different sample sites. There were significant correlations of microbiota diversity and body weight, a measure of age, body-mass index, serum concentration of leptin, and virus, nematode and mite infection
Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC
This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing
Intraoperative in vivo confocal endomicroscopy of the glioma margin: performance assessment of image interpretation by neurosurgeon users.
OBJECTIVES
Confocal laser endomicroscopy (CLE) is an intraoperative real-time cellular resolution imaging technology that images brain tumor histoarchitecture. Previously, we demonstrated that CLE images may be interpreted by neuropathologists to determine the presence of tumor infiltration at glioma margins. In this study, we assessed neurosurgeons' ability to interpret CLE images from glioma margins and compared their assessments to those of neuropathologists.
METHODS
In vivo CLE images acquired at the glioma margins that were previously reviewed by CLE-experienced neuropathologists were interpreted by four CLE-experienced neurosurgeons. A numerical scoring system from 0 to 5 and a dichotomous scoring system based on pathological features were used. Scores from assessments of hematoxylin and eosin (H&E)-stained sections and CLE images by neuropathologists from a previous study were used for comparison. Neurosurgeons' scores were compared to the H&E findings. The inter-rater agreement and diagnostic performance based on neurosurgeons' scores were calculated. The concordance between dichotomous and numerical scores was determined.
RESULTS
In all, 4275 images from 56 glioma margin regions of interest (ROIs) were included in the analysis. With the numerical scoring system, the inter-rater agreement for neurosurgeons interpreting CLE images was moderate for all ROIs (mean agreement, 61%), which was significantly better than the inter-rater agreement for the neuropathologists (mean agreement, 48%) (p < 0.01). The inter-rater agreement for neurosurgeons using the dichotomous scoring system was 83%. The concordance between the numerical and dichotomous scoring systems was 93%. The overall sensitivity, specificity, positive predictive value, and negative predictive value were 78%, 32%, 62%, and 50%, respectively, using the numerical scoring system and 80%, 27%, 61%, and 48%, respectively, using the dichotomous scoring system. No statistically significant differences in diagnostic performance were found between the neurosurgeons and neuropathologists.
CONCLUSION
Neurosurgeons' performance in interpreting CLE images was comparable to that of neuropathologists. These results suggest that CLE could be used as an intraoperative guidance tool with neurosurgeons interpreting the images with or without assistance of the neuropathologists. The dichotomous scoring system is robust yet simple and may streamline rapid, simultaneous interpretation of CLE images during imaging
- …
