110 research outputs found

    Interventions to Combat Burnout in Intensive Care Unit Nurses

    Get PDF
    Background: This literature review summarizes the knowledge, causative factors, associations/relationships, and interventions of burnout, positive work environments, and sleep quality in intensive care unit (ICU) nurses. Objectives: To answer the question, how effective is a positive work environment compared to psychological interventions, specifically improved sleep habits, in reducing burnout in ICU nurses? Methods: A literature search was conducted using combined keywords in 4 databases of 10 peer reviewed publications from 2016 to 2022. Information related to burnout, positive work environments, and sleep quality in intensive care unit (ICU) nurses was compared and summarized. Results: There is sufficient evidence that positive work environments and psychological sleep interventions are effective in reducing burnout among intensive-care unit (ICU) nurses. Conclusion: Positive work environments and psychological interventions are effective in reducing burnout among ICU nurses. It is essential for collaborative change in the nursing profession to support these interventions to reduce the prevalence of burnout

    Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice

    Get PDF
    A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect)1, electrolytes (the second Wien effect)2 and semiconductors (the Poole–Frenkel effect)3. It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches4 to spin ice5,6,7,8,9,10,11 to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles12,13,14,15,16 at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole–Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect2 for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice17,18. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems

    Higgs Phases and Boundary Criticality

    Full text link
    Motivated by recent work connecting Higgs phases to symmetry protected topological (SPT) phases, we investigate the interplay of gauge redundancy and global symmetry in lattice gauge theories with Higgs fields in the presence of a boundary. The core conceptual point is that a global symmetry associated to a Higgs field, which is pure-gauge in a closed system, acts physically at the boundary under boundary conditions which allow electric flux to escape the system. We demonstrate in both Abelian and non-Abelian models that this symmetry is spontaneously broken in the Higgs regime, implying the presence of gapless edge modes. Starting with the U(1) Abelian Higgs model in 4D, we demonstrate a boundary phase transition in the 3D XY universality class separating the bulk Higgs and confining regimes. Varying the boundary coupling while preserving the symmetries shifts the location of the boundary phase transition. We then consider non-Abelian gauge theories with fundamental and group-valued Higgs matter, and identify the analogous non-Abelian global symmetry acting on the boundary generated by the total color charge. For SU(NN) gauge theory with fundamental Higgs matter we argue for a boundary phase transition in the O(2N2N) universality class, verified numerically for N=2,3N=2,3. For group-valued Higgs matter, the boundary theory is a principal chiral model exhibiting chiral symmetry breaking. We further demonstrate this mechanism in theories with higher-form Higgs fields. We show how the higher-form matter symmetry acts at the boundary and can spontaneously break, exhibiting a boundary confinement-deconfinement transition. We also study the electric-magnetic dual theory, demonstrating a dual magnetic defect condensation transition at the boundary. We discuss some implications and extensions of these findings and what they may imply for the relation between Higgs and SPT phases.Comment: 33 pages, 12 figures, 1 tabl

    Visualization of Isospin Momentum Texture of Dirac Magnons and Excitons in a Honeycomb Quantum Magnet

    Get PDF
    Complementary to studies of symmetry-protected band-touching points for electron bands in metallic systems, we explore analogous physics for propagating bosonic quasiparticles, magnons and spin-orbit excitons, in the insulating easy-plane honeycomb quantum magnet CoTiO3. We probe directly the winding of the isospin texture of the quasiparticle wavefunction in momentum space near a nodal point through its characteristic fingerprint in the dynamical structure factor probed by inelastic neutron scattering. In addition, our high-resolution measurements reveal a finite spectral gap at low energies, which cannot be explained by a semiclassical treatment for the ground state pseudospins-1/2. As possible mechanisms for the spectral gap generation we propose quantum-order-by-disorder induced by bond-dependent anisotropic couplings such as Kitaev exchange, and higher-order spin-orbital exchanges. We provide a spin-orbital flavor-wave model that captures both the gapped magnons and dispersive excitons within the same Hamiltonian.Comment: 5 pages main text + 23 pages supplemental materia

    Exploring non-collinear magnetic ground states in tetragonal Mn<sub>2</sub>-based Heusler compounds

    Get PDF
    Heusler compounds constitute a large family of intermetallic materials notable for their wide variety of properties such as magnetism, multi-ferroicity, nontrivial band topology, superconductivity and so on. Among their magnetic properties one finds a tremendous variety of states from simple ferromagnetism to skyrmion crystals. In most Mn2-based Heuslers the magnetism is typically collinear. An exception is Mn2RhSn in which an unusual ground state with magnetic canting and a temperature-induced spin re-orientation into the collinear ferrimagnetic phase has been reported from experiments. In this work, we employ first-principles calculations and mean field theory to provide a simple account of the unusual phase diagram in this magnet. We also highlight Weyl points in the computed band structure of \mrs\ and the resulting Fermi arcs.<br

    Histone deacetylase inhibitors mitigate antipsychotic risperidone-induced motor side effects in aged mice and in a mouse model of Alzheimer’s disease

    Get PDF
    Antipsychotic drugs are still widely prescribed to control various severe neuropsychiatric symptoms in the elderly and dementia patients although they are off-label use in the United States. However, clinical practice shows greater side effects and lower efficacy of antipsychotics for this vulnerable population and the mechanisms surrounding this aged-related sensitivity are not well understood. Our previous studies have shown that aging-induced epigenetic alterations may be involved in the increasing severity of typical antipsychotic haloperidol induced side effects in aged mice. Still, it is unknown if similar epigenetic mechanisms extend to atypical antipsychotics, which are most often prescribed to dementia patients combined with severe neuropsychiatric symptoms. In this study, we report that atypical antipsychotic risperidone also causes increased motor side effect behaviors in aged mice and 5xFAD mice. Histone deacetylase (HDAC) inhibitor Valproic Acid and Entinostat can mitigate the risperidone induced motor side effects. We further showed besides D2R, reduced expression of 5-HT2A, one of the primary atypical antipsychotic targets in the striatum of aged mice that are also mitigated by HDAC inhibitors. Finally, we demonstrate that specific histone acetylation mark H3K27 is hypoacetylated at the 5htr2a and Drd2 promoters in aged mice and can be reversed with HDAC inhibitors. Our work here establishes evidence for a mechanism where aging reduces expression of 5-HT2A and D2R, the key atypical antipsychotic drug targets through epigenetic alteration. HDAC inhibitors can restore 5-HT2A and D2R expression in aged mice and decrease the motor side effects in aged and 5xFAD mice

    The Chlamydia psittaci Genome: A Comparative Analysis of Intracellular Pathogens

    Get PDF
    Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis.A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins.This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions

    Efficiency of Purine Utilization by Helicobacter pylori: Roles for Adenosine Deaminase and a NupC Homolog

    Get PDF
    The ability to synthesize and salvage purines is crucial for colonization by a variety of human bacterial pathogens. Helicobacter pylori colonizes the gastric epithelium of humans, yet its specific purine requirements are poorly understood, and the transport mechanisms underlying purine uptake remain unknown. Using a fully defined synthetic growth medium, we determined that H. pylori 26695 possesses a complete salvage pathway that allows for growth on any biological purine nucleobase or nucleoside with the exception of xanthosine. Doubling times in this medium varied between 7 and 14 hours depending on the purine source, with hypoxanthine, inosine and adenosine representing the purines utilized most efficiently for growth. The ability to grow on adenine or adenosine was studied using enzyme assays, revealing deamination of adenosine but not adenine by H. pylori 26695 cell lysates. Using mutant analysis we show that a strain lacking the gene encoding a NupC homolog (HP1180) was growth-retarded in a defined medium supplemented with certain purines. This strain was attenuated for uptake of radiolabeled adenosine, guanosine, and inosine, showing a role for this transporter in uptake of purine nucleosides. Deletion of the GMP biosynthesis gene guaA had no discernible effect on mouse stomach colonization, in contrast to findings in numerous bacterial pathogens. In this study we define a more comprehensive model for purine acquisition and salvage in H. pylori that includes purine uptake by a NupC homolog and catabolism of adenosine via adenosine deaminase

    Pauling Entropy, Metastability, and Equilibrium in Dy_{2}Ti_{2}O_{7} Spin Ice

    Get PDF
    Determining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15  K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5 K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35  K/10^{6}  s and 0.5  K/10^{5}  s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions

    Pauling Entropy, Metastability, and Equilibrium in Dy_{2}Ti_{2}O_{7} Spin Ice

    Get PDF
    Determining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15  K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5 K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35  K/10^{6}  s and 0.5  K/10^{5}  s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions
    corecore