3,903 research outputs found
Holography and non-locality in a closed vacuum-dominated universe
A closed vacuum-dominated Friedmann universe is asymptotic to a de Sitter
space with a cosmological event horizon for any observer. The holographic
principle says the area of the horizon in Planck units determines the number of
bits of information about the universe that will ever be available to any
observer. The wavefunction describing the probability distribution of mass
quanta associated with bits of information on the horizon is the boundary
condition for the wavefunction specifying the probability distribution of mass
quanta throughout the universe. Local interactions between mass quanta in the
universe cause quantum transitions in the wavefunction specifying the
distribution of mass throughout the universe, with instantaneous non-local
effects throughout the universe.Comment: 4 pages, no figures, to be published in Int. J. Theor. Phys,
references correcte
Spherical Harmonic Decomposition on a Cubic Grid
A method is described by which a function defined on a cubic grid (as from a
finite difference solution of a partial differential equation) can be resolved
into spherical harmonic components at some fixed radius. This has applications
to the treatment of boundary conditions imposed at radii larger than the size
of the grid, following Abrahams, Rezzola, Rupright et al.(gr-qc/9709082}. In
the method described here, the interpolation of the grid data to the
integration 2-sphere is combined in the same step as the integrations to
extract the spherical harmonic amplitudes, which become sums over grid points.
Coordinates adapted to the integration sphere are not needed.Comment: 5 pages, LaTeX uses cjour.cls (supplied
Quantum nature of black holes
I reconsider Hawking's analysis of the effects of gravitational collapse on
quantum fields, taking into account interactions between the fields. The
ultra-high energy vacuum fluctuations, which had been considered to be an
awkward peripheral feature of the analysis, are shown to play a key role. By
interactions, they can scatter particles to, or create pairs of particle at,
ultra-high energies. The energies rapidly become so great that quantum gravity
must play a dominant role. Thus the vicinities of black holes are essentially
quantum-gravitational regimes.Comment: 7 pages, 5 figures. Honorable mention in the 2004 Gravity Research
Foundation Essay Competitio
Taub-NUT space as a counterexample to almost anything Technical report no. 529
Taub-NUT space as countermeasure to almost anything - Einstein equation, classical mechanics, and differential equation
The Dynamics of General Relativity
This article--summarizing the authors' then novel formulation of General
Relativity--appeared as Chapter 7 of an often cited compendium edited by L.
Witten in 1962, which is now long out of print. Intentionally unretouched, this
posting is intended to provide contemporary accessibility to the flavor of the
original ideas. Some typographical corrections have been made: footnote and
page numbering have changed--but not section nor equation numbering etc. The
authors' current institutional affiliations are encoded in:
[email protected], [email protected], [email protected] .Comment: 30 pages (LaTeX2e), uses amsfonts, no figure
Gravitomagnetic time delay and the Lense-Thirring effect in Brans-Dicke theory of gravity
We discuss the gravitomagnetic time delay and the Lense-Thirring effect in
the context of Brans-Dicke theory of gravity. We compare the theoretical
results obtained with those predicted by general relativity. We show that
within the accuracy of experiments designed to measure these effects both
theories predict essentially the same result.Comment: 10 pages Typeset using REVTE
Boltzmann hierarchy for the cosmic microwave background at second order including photon polarization
Non-gaussianity and B-mode polarization are particularly interesting features
of the cosmic microwave background, as -- at least in the standard model of
cosmology -- their only sources to first order in cosmological perturbation
theory are primordial, possibly generated during inflation. If the primordial
sources are small, the question arises how large is the non-gaussianity and
B-mode background induced in second-order from the initially gaussian and
scalar perturbations. In this paper we derive the Boltzmann hierarchy for the
microwave background photon phase-space distributions at second order in
cosmological perturbation theory including the complete polarization
information, providing the basis for further numerical studies. As an aside we
note that the second-order collision term contains new sources of B-mode
polarization and that no polarization persists in the tight-coupling limit.Comment: LaTeX, 33 page
Notes on Spinoptics in a Stationary Spacetime
In arXiv:1105.5629, equations of the modified geometrical optics for
circularly polarized photon trajectories in a stationary spacetime are derived
by using a (1+3)-decomposed form of Maxwell's equations. We derive the same
results by using a four-dimensional covariant description. In our procedure,
the null nature of the modified photon trajectory naturally appears and the
energy flux is apparently null. We find that, in contrast to the standard
geometrical optics, the inner product of the stationary Killing vector and the
tangent null vector to the modified photon trajectory is no longer a conserved
quantity along light paths. This quantity is furthermore different for left and
right handed photon. A similar analysis is performed for gravitational waves
and an additional factor of 2 appears in the modification due to the spin-2
nature of gravitational waves.Comment: 15 pages, to appear in PR
Second order perturbations of a Schwarzschild black hole: inclusion of odd parity perturbations
We consider perturbations of a Schwarzschild black hole that can be of both
even and odd parity, keeping terms up to second order in perturbation theory,
for the axisymmetric case. We develop explicit formulae for the
evolution equations and radiated energies and waveforms using the
Regge-Wheeler-Zerilli approach. This formulation is useful, for instance, for
the treatment in the ``close limit approximation'' of the collision of
counterrotating black holes.Comment: 12 pages RevTe
The Long-Term Future of Space Travel
The fact that we apparently live in an accelerating universe places
limitations on where humans might visit. If the current energy density of the
universe is dominated by a cosmological constant, a rocket could reach a galaxy
observed today at a redshift of 1.7 on a one-way journey or merely 0.65 on a
round trip. Unfortunately these maximal trips are impractical as they require
an infinite proper time to traverse. However, calculating the rocket trajectory
in detail shows that a rocketeer could nearly reach such galaxies within a
lifetime (a long lifetime admittedly -- about 100 years). For less negative
values of the maximal redshift increases becoming infinite for .Comment: 5 pages, 3 figures, minor changes to reflect version accepted to PR
- …
