2,188 research outputs found
SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator
We developed a new sub-nanosecond time-resolved instrument to study the
dynamics of UV-visible luminescence under high stopping power heavy ion
irradiation. We applied our instrument, called SPORT, on a fast plastic
scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean
electronic stopping power of 2.6 MeV/\mu m. As a consequence of increasing
permanent radiation damages with increasing ion fluence, our investigations
reveal a degradation of scintillation intensity together with, thanks to the
time-resolved measurement, a decrease in the decay constant of the
scintillator. This combination indicates that luminescence degradation
processes by both dynamic and static quenching, the latter mechanism being
predominant. Under such high density excitation, the scintillation
deterioration of BC-400 is significantly enhanced compared to that observed in
previous investigations, mainly performed using light ions. The observed
non-linear behaviour implies that the dose at which luminescence starts
deteriorating is not independent on particles' stopping power, thus
illustrating that the radiation hardness of plastic scintillators can be
strongly weakened under high excitation density in heavy ion environments.Comment: 5 figures, accepted in Nucl. Instrum. Methods
SuperMassive Black Holes in Bulges
We present spatially extended gas kinematics at parsec-scale resolution for
the nuclear regions of four nearby disk galaxies, and model them as rotation of
a gas disk in the joint potential of the stellar bulge and a putative central
black hole. The targets were selected from a larger set of long-slit spectra
obtained with the Hubble Space Telescope as part of the Survey of Nearby Nuclei
with STIS (SUNNS). They represents the 4 galaxies (of 24) that display
symmetric gas velocity curves consistent with a rotating disk. We derive the
stellar mass distribution from the STIS acquisition images adopting the stellar
mass-to-light ratio normalized so as to match ground-based velocity dispersion
measurements over a large aperture. Subsequently, we constrain the mass of a
putative black hole by matching the gas rotation curve, following two distinct
approaches. In the most general case we explore all the possible disk
orientations, alternatively we constrain the gas disk orientation from the
dust-lane morphology at similar radii. In the latter case the kinematic data
indicate the presence of a central black hole for three of the four objects,
with masses of 10^7 - 10^8 solar masses, representing up to 0.025 % of the host
bulge mass. For one object (NGC2787) the kinematic data alone provide clear
evidence for the presence of a central black hole even without external
constraints on the disk orientation. These results illustrate directly the need
to determine black-hole masses by differing methods for a large number of
objects, demonstrate that the variance in black hole/bulge mass is much larger
than previously claimed, and reinforce the recent finding that the black-hole
mass is tightly correlated with the bulge stellar velocity dispersion.Comment: 26 pages, 11 Postscript figures, accepted for publication on Ap
An observational prospective study of topical acidified nitrite for killing methicillin-resistant Staphylococcus aureus (MRSA) in contaminated wounds
Background Endogenous nitric oxide (NO) kills bacteria and other organisms as part of the innate immune response. When nitrite is exposed to low pH, NO is generated and has been used as an NO delivery system to treat skin infections. We demonstrated eradication of MRSA carriage from wounds using a topical formulation of citric acid (4.5%) and sodium nitrite (3%) creams co-applied for 5 days to 15 wounds in an observational prospective pilot study of 8 patients. Findings Following treatment with topical citric acid and sodium nitrite, 9 of 15 wounds (60%) and 3 of 8 patients (37%) were cleared of infection. MRSA isolates from these patients were all sensitive to acidified nitrite in vitro compared to methicillin-sensitive S. aureus and a reference strain of MRSA. Conclusions Nitric oxide and acidified nitrite offer a novel therapy for control of MRSA in wounds. Wounds that were not cleared of infection may have been re-contaminated or the bioavailability of acidified nitrite impaired by local factors in the tissue
UGC 7388: a galaxy with two tidal loops
We present the results of spectroscopic and morphological studies of the
galaxy UGC7388 with the 8.1-m Gemini North telescope. Judging by its observed
characteristics, UGC7388 is a giant late-type spiral galaxy seen almost
edge-on. The main body of the galaxy is surrounded by two faint (\mu(B) ~ 24
and \mu(B) ~ 25.5) extended (~20-30 kpc) loop-like structures. A large-scale
rotation of the brighter loop about the main galaxy has been detected. We
discuss the assumption that the tidal disruption of a relatively massive
companion is observed in the case of UGC7388. A detailed study and modeling of
the observed structure of this unique galaxy can give important information
about the influence of the absorption of massive companions on the galactic
disks and about the structure of the dark halo around UGC7388.Comment: 8 pages, 5 figure
Flux pinning in (1111) iron-pnictide superconducting crystals
Local magnetic measurements are used to quantitatively characterize
heterogeneity and flux line pinning in PrFeAsO_1-y and NdFeAs(O,F)
superconducting single crystals. In spite of spatial fluctuations of the
critical current density on the macroscopic scale, it is shown that the major
contribution comes from collective pinning of vortex lines by microscopic
defects by the mean-free path fluctuation mechanism. The defect density
extracted from experiment corresponds to the dopant atom density, which means
that dopant atoms play an important role both in vortex pinning and in
quasiparticle scattering. In the studied underdoped PrFeAsO_1-y and NdFeAs(O,F)
crystals, there is a background of strong pinning, which we attribute to
spatial variations of the dopant atom density on the scale of a few dozen to
one hundred nm. These variations do not go beyond 5% - we therefore do not find
any evidence for coexistence of the superconducting and the antiferromagnetic
phase. The critical current density in sub-T fields is characterized by the
presence of a peak effect, the location of which in the (B,T)-plane is
consistent with an order-disorder transition of the vortex lattice.Comment: 12 pages, submitted to Phys Rev.
Molecular Gas Dynamics in NGC 6946: a Bar-driven Nuclear Starburst "Caught in the Act"
We present high angular resolution ~1" and 0.6" mm-interferometric
observations of the 12CO(1-0) and 12CO(2-1) line emission in the central 300pc
of the late-type spiral galaxy NGC6946. The data, obtained with the IRAM
Plateau de Bure Interferometer (PdBI), allow the first detection of a molecular
gas spiral in the inner ~10" (270pc) with a large concentration of molecular
gas (M(H_2) ~1.6x10^7M_sun) within the inner 60pc. This nuclear clump shows
evidence for a ring-like geometry with a radius of ~10pc as inferred from the
p-v diagrams. Both the distribution of the molecular gas as well as its
kinematics can be well explained by the influence of an inner stellar bar of
about 400pc length. A qualitative model of the expected gas flow shows that
streaming motions along the leading sides of this bar are a plausible
explanation for the high nuclear gas density. Thus, NGC6946 is a prime example
of molecular gas kinematics being driven by a small-scale, secondary stellar
bar.Comment: accepted for publication in the Astrophysical Journal; 47 pages, 17
figures, 1 tabl
Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2
The formation of nano-hillocks on CaF2 crystal surfaces by individual ion
impact has been studied using medium energy (3 and 5 MeV) highly charged ions
(Xe19+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV)
heavy ions. For very slow highly charged ions the appearance of hillocks is
known to be linked to a threshold in potential energy while for swift heavy
ions a minimum electronic energy loss is necessary. With our results we bridge
the gap between these two extreme cases and demonstrate, that with increasing
energy deposition via electronic energy loss the potential energy threshold for
hillock production can be substantially lowered. Surprisingly, both mechanisms
of energy deposition in the target surface seem to contribute in an additive
way, as demonstrated when plotting the results in a phase diagram. We show that
the inelastic thermal spike model, originally developed to describe such
material modifications for swift heavy ions, can be extended to case where
kinetic and potential energies are deposited into the surface.Comment: 12 pages, 4 figure
Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.
OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock.
METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact.
RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring.
CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock
Estimating Black Hole Masses in Triaxial Galaxies
Most of the super massive black hole mass estimates based on stellar
kinematics use the assumption that galaxies are axisymmetric oblate spheroids
or spherical. Here we use fully general triaxial orbit-based models to explore
the effect of relaxing the axisymmetric assumption on the previously studied
galaxies M32 and NGC 3379. We find that M32 can only be modeled accurately
using an axisymmetric shape viewed nearly edge-on and our black hole mass
estimate is identical to previous studies. When the observed 5 degrees
kinematical twist is included in our model of NGC 3379, the best shape is
mildly triaxial and we find that our best-fitting black hole mass estimate
doubles with respect to the axisymmetric model. This particular black hole mass
estimate is still within the errors of that of the axisymmetric model and
consistent with the M-sigma relationship. However, this effect may have a
pronounced impact on black hole demography, since roughly a third of the most
massive galaxies are strongly triaxial.Comment: Accepted for publication in MNRAS. 11 pages, 9 figures. PDFlate
- …
