62 research outputs found
Kaon production at subthreshold and threshold energies
We summarize what we have learnt about the kaon production in nucleus-nucleus
collisions in the last decade. We will address three questions: a) Is the
production sensitive to the nuclear equation of state? b) How can it happen
that at the same excess energy the same number of and are produced
in heavy ion collisions although the elementary cross section in pp collisions
differs by orders of magnitudes? and c) Why kaons don't flow?Comment: 5 pages, 4 figures, contribution to Strange Quark Matter 200
Virial corrections to simulations of heavy ion reactions
Within QMD simulations we demonstrate the effect of virial corrections on heavy ion reactions. Unlike in standard codes, the binary collisions are treated as non-local so that the contribution of the collision flux to the reaction dynamics is covered. A comparison with standard QMD simulations shows that the virial corrections lead to a broader proton distribution bringing theoretical spectra closer towards experimental values. Complementary BUU simulations reveal that the non-locality enhances the collision rate in the early stage of the reaction. It suggests that the broader distribution appears due to an enhanced pre-equilibrium emission of particles
Limitation of energy deposition in classical N body dynamics
Energy transfers in collisions between classical clusters are studied with
Classical N Body Dynamics calculations for different entrance channels. It is
shown that the energy per particle transferred to thermalised classical
clusters does not exceed the energy of the least bound particle in the cluster
in its ``ground state''. This limitation is observed during the whole time of
the collision, except for the heaviest system.Comment: 13 pages, 15 figures, 1 tabl
The Origins of Phase Transitions in Small Systems
The identification and classification of phases in small systems, e.g.
nuclei, social and financial networks, clusters, and biological systems, where
the traditional definitions of phase transitions are not applicable, is
important to obtain a deeper understanding of the phenomena observed in such
systems. Within a simple statistical model we investigate the validity and
applicability of different classification schemes for phase transtions in small
systems. We show that the whole complex temperature plane contains necessary
information in order to give a distinct classification.Comment: 3 pages, 4 figures, revtex 4 beta 5, for further information see
http://www.smallsystems.d
A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions
The particle emission at intermediate velocities in mass asymmetric reactions
is studied within the framework of classical molecular dynamics. Two reactions
in the Fermi energy domain were modelized, Ni+C and Ni+Au at 34.5
MeV/nucleon. The availability of microscopic correlations at all times allowed
a detailed study of the fragment formation process. Special attention was paid
to the physical origin of fragments and emission timescales, which allowed us
to disentangle the different processes involved in the mid-rapidity particle
production. Consequently, a clear distinction between a prompt pre- equilibrium
emission and a delayed aligned asymmetric breakup of the heavier partner of the
reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new
section discussing the role of Coulomb in IMF production was include
Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions
We study the anisotropy effects measured with INDRA at GSI in central
collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy.
The microcanonical multifragmentation model with non-spherical sources is used
to simulate an incomplete shape relaxation of the multifragmenting system. This
model is employed to interpret observed anisotropic distributions in the
fragment size and mean kinetic energy. The data can be well reproduced if an
expanding prolate source aligned along the beam direction is assumed. An either
non-Hubblean or non-isotropic radial expansion is required to describe the
fragment kinetic energies and their anisotropy. The qualitative similarity of
the results for the studied reactions suggests that the concept of a
longitudinally elongated freeze-out configuration is generally applicable for
central collisions of heavy systems. The deformation decreases slightly with
increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics
Color-Neutral Superconducting Quark Matter
We investigate the consequences of enforcing local color neutrality on the
color superconducting phases of quark matter by utilizing the
Nambu-Jona-Lasinio model supplemented by diquark and the t'Hooft six-fermion
interactions. In neutrino free matter at zero temperature, color neutrality
guarantees that the number densities of u, d, and s quarks in the
Color-Flavor-Locked (CFL) phase will be equal even with physical current quark
masses. Electric charge neutrality follows as a consequence and without the
presence of electrons. In contrast, electric charge neutrality in the less
symmetric 2-flavor superconducting (2SC) phase with ud pairing requires more
electrons than the normal quark phase. The free energy density cost of
enforcing color and electric charge neutrality in the CFL phase is lower than
that in the 2SC phase, which favors the formation of the CFL phase. With
increasing temperature and neutrino content, an unlocking transition occurs
from the CFL phase to the 2SC phase with the order of the transition depending
on the temperature, the quark and lepton number chemical potentials. The
astrophysical implications of this rich structure in the phase diagram,
including estimates of the effects from Goldstone bosons in the CFL phase, are
discussed.Comment: 20 pages, 4 figures; version to appear in Phys. Rev.
Statistical evolution of isotope composition of nuclear fragments
Calculations within the statistical multifragmentation model show that the
neutron content of intermediate mass fragments can increase in the region of
liquid-gas phase transition in finite nuclei. The model predicts also
inhomogeneous distributions of fragments and their isospin in the freeze-out
volume caused by an angular momentum and external long-range Coulomb field.
These effects can take place in peripheral nucleus-nucleus collisions at
intermediate energies and lead to neutron-rich isotopes produced in the
midrapidity kinematic region.Comment: 14 pages with 4 figures. GSI preprint, Darmstadt, 200
Thermally-induced expansion in the 8 GeV/c + Au reaction
Fragment kinetic energy spectra for reactions induced by 8.0 GeV/c
beams incident on a Au target have been analyzed in
order to deduce the possible existence and influence of thermal expansion. The
average fragment kinetic energies are observed to increase systematically with
fragment charge but are nearly independent of excitation energy. Comparison of
the data with statistical multifragmentation models indicates the onset of
extra collective thermal expansion near an excitation energy of E*/A
5 MeV. However, this effect is weak relative to the radial
expansion observed in heavy-ion-induced reactions, consistent with the
interpretation that the latter expansion may be driven primarily by dynamical
effects such as compression/decompression.Comment: 12 pages including 4 postscript figure
Multifragmentation in Xe(50A MeV)+Sn Confrontation of theory and data
We compare in detail central collisions Xe(50A MeV) + Sn, recently measured
by the INDRA collaboration, with the Quantum Molecular Dynamics (QMD) model in
order to identify the reaction mechanism which leads to multifragmentation. We
find that QMD describes the data quite well, in the projectile/target region as
well as in the midrapidity zone where also statistical models can be and have
been employed. The agreement between QMD and data allows to use this dynamical
model to investigate the reaction in detail. We arrive at the following
observations: a) the in medium nucleon nucleon cross section is not
significantly different from the free cross section, b) even the most central
collisions have a binary character, c) most of the fragments are produced in
the central collisions and d) the simulations as well as the data show a strong
attractive in-plane flow resembling deep inelastic collisions e) at midrapidity
the results from QMD and those from statistical model calculations agree for
almost all observables with the exception of . This
renders it difficult to extract the reaction mechanism from midrapidity
fragments only. According to the simulations the reaction shows a very early
formation of fragments, even in central collisions, which pass through the
reaction zone without being destroyed. The final transverse momentum of the
fragments is very close to the initial one and due to the Fermi motion. A
heating up of the systems is not observed and hence a thermal origin of the
spectra cannot be confirmed.Comment: figures 1 and 2 changed (no more ps -errors
- …
