197 research outputs found
Nonlinear dynamo in a short Taylor-Couette setup
It is numerically demonstrated by means of a magnetohydrodynamics code that a
short Taylor-Couette setup with a body force can sustain dynamo action. The
magnetic threshold is comparable to what is usually obtained in spherical
geometries. The linear dynamo is characterized by a rotating equatorial dipole.
The nonlinear regime is characterized by fluctuating kinetic and magnetic
energies and a tilted dipole whose axial component exhibits aperiodic reversals
during the time evolution. These numerical evidences of dynamo action in a
short Taylor-Couette setup may be useful for developing an experimental device
Specific heat of the Kelvin modes in low temperature superfluid turbulence
It is pointed out that the specific heat of helical vortex line excitations,
in low temperature superfluid turbulence experiments carried out in helium II,
can be of the same order as the specific heat of the phononic quasiparticles.
The ratio of Kelvin mode and phonon specific heats scales with L_0 T^{-5/2},
where L_0 represents the smoothed line length per volume within the vortex
tangle, such that the contribution of the vortex mode specific heat should be
observable for L_0 = 10^6-10^8 cm^{-2}, and at temperatures which are of order
1-10 mK.Comment: 3 pages, 1 figur
Towards a precession driven dynamo experiment
The most ambitious project within the DREsden Sodium facility for DYNamo and
thermohydraulic studies (DRESDYN) at Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) is the set-up of a precession-driven dynamo experiment. After discussing
the scientific background and some results of water pre-experiments and
numerical predictions, we focus on the numerous structural and design problems
of the machine. We also outline the progress of the building's construction,
and the status of some other experiments that are planned in the framework of
DRESDYN.Comment: 9 pages, 6 figures, submitted to Magnetohydrodynamic
Electromagnetic induction in non-uniform domains
Kinematic simulations of the induction equation are carried out for different
setups suitable for the von-K\'arm\'an-Sodium (VKS) dynamo experiment. Material
properties of the flow driving impellers are considered by means of high
conducting and high permeability disks that are present in a cylindrical volume
filled with a conducting fluid. Two entirely different numerical codes are
mutually validated by showing quantitative agreement on Ohmic decay and
kinematic dynamo problems using various configurations and physical parameters.
Field geometry and growth rates are strongly modified by the material
properties of the disks even if the high permeability/high conductivity
material is localized within a quite thin region. In contrast the influence of
external boundary conditions remains small. Utilizing a VKS like mean fluid
flow and high permeability disks yields a reduction of the critical magnetic
Reynolds number for the onset of dynamo action of the simplest non-axisymmetric
field mode. However this decrease is not sufficient to become relevant in the
VKS experiment. Furthermore, the reduction of Rm_c is essentially influenced by
tiny changes in the flow configuration so that the result is not very robust
against small modifications of setup and properties of turbulence
Remarks on the stability of the Navier-Stokes equations supplemented with stress-free boundary conditions
The purpose of this note is to analyze the long term stability of the
Navier-Stokes equations supplemented with the Coriolis force and the
stress-free boundary condition. It is shown that, if the flow domain is
axisymmetric, spurious stability behaviors can occur depending whether the
Coriolis force is active or not
Role of boundary conditions in helicoidal flow collimation: Consequences for the von Kármán sodium dynamo experiment
International audienceWe present hydrodynamic and magnetohydrodynamic (MHD) simulations of liquid sodium flow with the PLUTO compressible MHD code to investigate influence of magnetic boundary conditions on the collimation of helicoidal motions. We use a simplified cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multiblades impeller inspired by those used in the Von-Kármán-sodium (VKS) experiment. We show that the impinging of the large-scale flow upon the impeller generates a coherent helicoidal vortex inside the blades, located at a distance from the upstream blade piloted by the incident angle of the flow. This vortex collimates any existing magnetic field lines leading to an enhancement of the radial magnetic field that is stronger for ferromagnetic than for conducting blades. The induced magnetic field modifies locally the velocity fluctuations, resulting in an enhanced helicity. This process possibly explains why dynamo action is more easily triggered in the VKS experiment when using soft iron impellers
Reconnection and acoustic emission of quantized vortices in superfluid by the numerical analysis of the Gross-Pitaevskii equation
We study numerically the reconnection of quantized vortices and the
concurrent acoustic emission by the analysis of the Gross-Pitaevskii equation.
Two quantized vortices reconnect following the process similar to classical
vortices; they approach, twist themselves locally so that they become
anti-parallel at the closest place, reconnect and leave separately.The
investigation of the motion of the singular lines where the amplitude of the
wave function vanishes in the vortex cores confirms that they follow the above
scenario by reconnecting at a point. This reconnection is not contradictory to
the Kelvin's circulation theorem, because the potential of the superflow field
becomes undefined at the reconnection point. When the locally anti-parallel
part of the vortices becomes closer than the healing length, it moves with the
velocity comparable to the sound velocity, emits the sound waves and leads to
the pair annihilation or reconnection; this phenomena is concerned with the
Cherenkov resonance. The vortices are broken up to smaller vortex loops through
a series of reconnection, eventually disappearing with the acoustic emission.
This may correspond to the final stage of the vortex cascade process proposed
by Feynman. The change in energy components, such as the quantum, the
compressible and incompressible kinetic energy is analyzed for each dynamics.
The propagation of the sound waves not only appears in the profile of the
amplitude of the wave function but also affects the field of its phase,
transforming the quantum energy due to the vortex cores to the kinetic energy
of the phase field.Comment: 11 pages, 16 figures, LaTe
Nonlinear dynamo action in a precessing cylindrical container
It is numerically demonstrated by means of a magnetohydrodynamics (MHD) code
that precession can trigger the dynamo effect in a cylindrical container. This
result adds credit to the hypothesis that precession can be strong enough to be
one of the sources of the dynamo action in some astrophysical bodies.Comment: 5 pages, 5 figures including subfigure
- …
