142 research outputs found

    Stable directions for small nonlinear Dirac standing waves

    Full text link
    We prove that for a Dirac operator with no resonance at thresholds nor eigenvalue at thresholds the propagator satisfies propagation and dispersive estimates. When this linear operator has only two simple eigenvalues close enough, we study an associated class of nonlinear Dirac equations which have stationary solutions. As an application of our decay estimates, we show that these solutions have stable directions which are tangent to the subspaces associated with the continuous spectrum of the Dirac operator. This result is the analogue, in the Dirac case, of a theorem by Tsai and Yau about the Schr\"{o}dinger equation. To our knowledge, the present work is the first mathematical study of the stability problem for a nonlinear Dirac equation.Comment: 62 page

    Spacial and temporal dynamics of the volume fraction of the colloidal particles inside a drying sessile drop

    Full text link
    Using lubrication theory, drying processes of sessile colloidal droplets on a solid substrate are studied. A simple model is proposed to describe temporal dynamics both the shape of the drop and the volume fraction of the colloidal particles inside the drop. The concentration dependence of the viscosity is taken into account. It is shown that the final shapes of the drops depend on both the initial volume fraction of the colloidal particles and the capillary number. The results of our simulations are in a reasonable agreement with the published experimental data. The computations for the drops of aqueous solution of human serum albumin (HSA) are presented.Comment: Submitted to EPJE, 7 pages, 8 figure

    The Flowering of Black Locust (Robinia pseudoacacia L.) in Italy: A Phenology Modeling Approach

    Get PDF
    Knowledge of the flowering dates of black locust trees (Robinia pseudoacacia L.) is crucial information of both economic significance and scientific interest. Black locust is in fact an excellent melliferous plant and can provide information on climate change impacts due to its large distribution throughout the world as planted and naturalized trees. This paper presents the calibration and validation of a phenological model targeted at the simulation of the whole process of black locust flowering (from BBCH 51-inflorescence of flower buds visible-to BBCH 69-end of flowering). The work relies on the phenological observations gathered in the context of IPHEN, the Italian PHEnological Network, with a broad latitudinal distribution of the observational sites (from 37.53 degrees to 46.28 degrees N) and a long time span, from 2010 to 2021. Phenology modeling is based on the Normal Heat Hours approach, which translates air temperature into thermal units based on a plant specific response curve. As meteorological input data, a high resolution (0.045 degrees) gridded dataset was obtained by spatial interpolation of GSOD (NOAA) weather stations

    What Can 5G Do for Public Safety? Structural Health Monitoring and Earthquake Early Warning Scenarios

    Get PDF
    The 5th generation of mobile networks has come to the market bringing the promise of disruptive performances as low latency, availability and reliability, imposing the development of the so-called “killer applications”. This contribution presents a 5G use case in the context of Structural Health Monitoring which guarantees an unprecedented level of reliability when exploited for public safety purposes as Earthquake Early Warning. The interest on this topic is at first justified through a deep market analysis, and subsequently declined in terms of public safety benefits. A specific sensor board, guaranteeing real-time processing and 5G connectivity, is presented as the foundation on which the architecture of the network is designed and developed. Advantages of 5G-enabled urban safety are then discussed and proven in the experimentation results, showing that the proposed architecture guarantees lower latency delays and overcome the impairments of cloud solutions especially in terms of delays variability

    Evaluation of the irradiation treatment effects on ancient parchment samples

    Get PDF
    In this work, the effect of X-ray irradiation as a disinfection treatment in original ancient parchment samples, belonging to a discarded book cover of a 16th-century archival register, has been evaluated. Specifically, the bacterial and fungal species isolated from the book cover have been characterized and then irradiated with increasing doses of X-rays with the aim to evaluate the effectiveness of the antimicrobial protocol on the isolated microorganisms. The deterioration effects induced by the X-ray treatment as well as the natural aging on the collagen matrix of the parchment sample have been tested by employing several techniques, namely, Light Transmission Analysis, Fiber Optic Reflectance Spectroscopy, Attenuated Total Reflectance-Fourier Transformed Infrared spectroscopy, UV Resonant Raman spectroscopy and Atomic Force Microscopy. The results reveal that the irradiation treatment applied to our ancient parchment samples deteriorated by biological attack and other naturally occurring phenomena, possibly associated with inappropriate conservation conditions, does not seem to induce further damage factors even when large doses of irradiation are employed. The X-rays-based disinfection treatment effects are limited on the collagen support and this confirms the potential of this method in mass disinfection of library and archival materials

    «La relation de limitation et d’exception dans le français d’aujourd’hui : excepté, sauf et hormis comme pivots d’une relation algébrique »

    Get PDF
    L’analyse des emplois prépositionnels et des emplois conjonctifs d’ “excepté”, de “sauf” et d’ “hormis” permet d’envisager les trois prépositions/conjonctions comme le pivot d’un binôme, comme la plaque tournante d’une structure bipolaire. Placées au milieu du binôme, ces prépositions sont forcées par leur sémantisme originaire dûment métaphorisé de jouer le rôle de marqueurs d’inconséquence systématique entre l’élément se trouvant à leur gauche et celui qui se trouve à leur droite. L’opposition qui surgit entre les deux éléments n’est donc pas une incompatibilité naturelle, intrinsèque, mais extrinsèque, induite. Dans la plupart des cas (emplois limitatifs), cette opposition prend la forme d’un rapport entre une « classe » et le « membre (soustrait) de la classe », ou bien entre un « tout » et une « partie » ; dans d’autres (emplois exceptifs), cette opposition se manifeste au contraire comme une attaque de front portée par un « tout » à un autre « tout ». De plus, l’inconséquence induite mise en place par la préposition/conjonction paraît, en principe, tout à fait insurmontable. Dans l’assertion « les écureuils vivent partout, sauf en Australie » (que l’on peut expliciter par « Les écureuils vivent partout, sauf [qu’ils ne vivent pas] en Australie »), la préposition semble en effet capable d’impliquer le prédicat principal avec signe inverti, et de bâtir sur une telle implication une sorte de sous énoncé qui, à la rigueur, est totalement inconséquent avec celui qui le précède (si « les écureuils ne vivent pas en Australie », le fait qu’ils « vivent partout » est faux). Néanmoins, l’analyse montre qu’alors que certaines de ces oppositions peuvent enfin être dépassées, d’autres ne le peuvent pas. C’est, respectivement, le cas des relations limitatives et des relations exceptives. La relation limitative, impliquant le rapport « tout » - « partie », permet de résoudre le conflit dans les termes d’une somme algébrique entre deux sous énoncés pourvus de différent poids informatif et de signe contraire. Les valeurs numériques des termes de la somme étant déséquilibrées, le résultat est toujours autre que zéro. La relation exceptive, au contraire, qui n’implique pas le rapport « tout » - « partie », n’est pas capable de résoudre le conflit entre deux sous énoncés pourvus du même poids informatif et en même temps de signe contraire : les valeurs numériques des termes de la somme étant symétriques et égales, le résultat sera toujours équivalent à zéro

    The High Mobility Group A1 (HMGA1) Chromatin Architectural Factor Modulates Nuclear Stiffness in Breast Cancer Cells

    Get PDF
    13siPlasticity is an essential condition for cancer cells to invade surrounding tissues. The nucleus is the most rigid cellular organelle and it undergoes substantial deformations to get through environmental constrictions. Nuclear stiffness mostly depends on the nuclear lamina and chromatin, which in turn might be affected by nuclear architectural proteins. Among these is the HMGA1 (High Mobility Group A1) protein, a factor that plays a causal role in neoplastic transformation and that is able to disentangle heterochromatic domains by H1 displacement. Here we made use of atomic force microscopy to analyze the stiffness of breast cancer cellular models in which we modulated HMGA1 expression to investigate its role in regulating nuclear plasticity. Since histone H1 is the main modulator of chromatin structure and HMGA1 is a well-established histone H1 competitor, we correlated HMGA1 expression and cellular stiffness with histone H1 expression level, post-translational modifications, and nuclear distribution. Our results showed that HMGA1 expression level correlates with nuclear stiffness, is associated to histone H1 phosphorylation status, and alters both histone H1 chromatin distribution and expression. These data suggest that HMGA1 might promote chromatin relaxation through a histone H1-mediated mechanism strongly impacting on the invasiveness of cancer cells-openopenSenigagliesi B, Penzo C, Severino LU, Maraspini R, Petrosino S, Morales-Navarrete H, Pobega E, Ambrosetti E, Parisse P, Pegoraro S, Manfioletti G, Casalis L, Sgarra RSenigagliesi, Beatrice; Penzo, C; Severino, Lu; Maraspini, R; Petrosino, Sara; Morales-Navarrete, H; Pobega, E; Ambrosetti, E; Parisse, P; Pegoraro, S; Manfioletti, G; Casalis, L; Sgarra,

    Severity of Hepatocyte Damage and Prognosis in Cirrhotic Patients Correlate with Hepatocyte Magnesium Depletion

    Get PDF
    We aimed to evaluate the magnesium content in human cirrhotic liver and its correlation with serum AST levels, expression of hepatocellular injury, and MELDNa prognostic score. In liver biopsies obtained at liver transplantation, we measured the magnesium content in liver tissue in 27 cirrhotic patients (CIRs) and 16 deceased donors with healthy liver (CTRLs) by atomic absorption spectrometry and within hepatocytes of 15 CIRs using synchrotron-based X-ray fluorescence microscopy. In 31 CIRs and 10 CTRLs, we evaluated the immunohistochemical expression in hepatocytes of the transient receptor potential melastatin 7 (TRPM7), a magnesium influx chanzyme also involved in inflammation. CIRs showed a lower hepatic magnesium content (117.2 (IQR 110.5-132.9) vs. 162.8 (IQR 155.9-169.8) mu g/g; p < 0.001) and a higher percentage of TRPM7 positive hepatocytes (53.0 (IQR 36.8-62.0) vs. 20.7 (10.7-32.8)%; p < 0.001) than CTRLs. In CIRs, MELDNa and serum AST at transplant correlated: (a) inversely with the magnesium content both in liver tissue and hepatocytes; and (b) directly with the percentage of hepatocytes stained intensely for TRPM7. The latter also directly correlated with the worsening of MELDNa at transplant compared to waitlisting. Magnesium depletion and overexpression of its influx chanzyme TRPM7 in hepatocytes are associated with severity of hepatocyte injury and prognosis in cirrhosis. These data represent the pathophysiological basis for a possible beneficial effect of magnesium supplementation in cirrhotic patients

    INVESTIGATING THE SEISMIC RESPONSE OF URM WALLS WITH IRREGULAR OPENING LAYOUT THROUGH DIFFERENT MODELING APPROACHES

    Get PDF
    The façade and internal walls of unreinforced masonry (URM) buildings often present an irregular opening layout, due to architectural reasons or modifications to the structure, which make the expected seismic damage pattern less predictable a priori. Therefore, the discretization of the walls in structural components is not standardized, conversely to cases with a regular opening layout for which the available modeling methods are corroborated by seismic damage surveys reporting recurrent failure patterns. The structural component discretization is a relevant step for the code-conforming seismic assessment, typically based on comparing the internal forces and drifts of each component to strength criteria and drift thresholds. Therefore, the lack of well-established approaches can significantly influence the assessment. The issue is even more evident when the structural components must be identified a priori in the modeling stage, namely for equivalent frame models. The applicability of available methods for discretization of URM walls with irregular opening layout has been already investigated in literature, but a conclusive judgment requires further studies. In this context, this paper presents an overview of the preliminary results addressing the numerical modeling of this type of walls within the framework of the DPC-ReLUIS 2022-2024 project (Subtask 10.3), funded by the Italian Department of Civil Protection. The Subtask aims to propose consensus-based recommendations for researchers and practitioners which can contribute to harmonize the use of different modeling approaches. Seven research groups are involved in the research, adopting different modeling approaches and computer codes, but similar assumptions and the same analysis method (pushover) are used. The benchmark URM structure illustrated in the paper is a two-story wall from which four configurations with increasing irregularity of opening layout were derived. The results of four modeling approached are presented. Three of them reproduce the mechanical response of masonry at the material scale by means of FE models implemented in OpenSees, DIANA and Abaqus software, while the remaining approach describes the mechanical response of masonry at the macro-element scale in 3DMacro software. Results were compared in terms of capacity curves, predicted failure mechanisms and evolution of internal forces in piers. The adoption of consistent assumptions among the different approaches led to an overall agreement of predictions at both wall and pier scales, particularly in terms of damage pattern with higher concentration of damage at the ground story. Despite that, differences on the pushover curves have been highlighted. They are mainly due to some deviations of the internal forces in squat piers deriving from a complex load flow in these elements
    corecore