3,035 research outputs found

    Radio background measurements at the Pierre Auger Observatory

    Get PDF
    Mesures du bruit de fond radio sur le site de l'observatoire Pierre Auge

    Experimental evidence of thermal fluctuations on the X-ray absorption near-edge structure at the aluminum K-edge

    Full text link
    After a review of temperature-dependent experimental x-ray absorption near-edge structure (XANES) and related theoretical developments, we present the Al K-edge XANES spectra of corundum and beryl for temperature ranging from 300K to 930K. These experimental results provide a first evidence of the role of thermal fluctuation in XANES at the Al K-edge especially in the pre-edge region. The study is carried out by polarized XANES measurements of single crystals. For any orientation of the sample with respect to the x-ray beam, the pre-edge peak grows and shifts to lower energy with temperature. In addition temperature induces modifications in the position and intensities of the main XANES features. First-principles DFT calculations are performed for both compounds. They show that the pre-edge peak originates from forbidden 1s to 3s transitions induced by vibrations. Three existing theoretical models are used to take vibrations into account in the absorption cross section calculations: i) an average of the XANES spectra over the thermal displacements of the absorbing atom around its equilibrium position, ii) a method based on the crude Born-Oppenheimer approximation where only the initial state is averaged over thermal displacements, iii) a convolution of the spectra obtained for the atoms at the equilibrium positions with an approximate phonon spectral function. The theoretical spectra so obtained permit to qualitatively understand the origin of the spectral modifications induced by temperature. However the correct treatment of thermal fluctuation in XANES spectroscopy requires more sophisticated theoretical tools

    Probiotics: Finding the Right Regulatory Balance

    Get PDF
    Some products marketed as drugs should be excused from Phase I trials, but safety and efficacy claims for dietary supplements should be more tightly regulated

    The STAR Silicon Strip Detector (SSD)

    Full text link
    The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl

    Role of local disorder in the dielectric response of BaTaO_2N

    Get PDF
    Short-range structural disorder of the high-κ dielectric BaTaO_2N is revealed by the analysis of the extended x-ray-absorption fine-structure (EXAFS) spectroscopy measured at the Ta L_III edge. Although previous neutron, x-ray, and electron diffraction studies have shown BaTaO_2N to crystallize in a centrosymmetric, cubic structure, these EXAFS spectra show a wide distribution of first shell Ta-(O,N) distances with further implications to nonuniformity of the existing octahedral distortions. A distortion model based upon a density functional theory energy minimization for a 4×4×4 supercell of BaTaO_2N was used to successfully interpret these EXAFS data. We find that structural distortions with very short correlation lengths exist in this material and that these distortions are consistent with the large dielectric permitivity of BaTaO_2N

    A group-galaxy cross-correlation function analysis in zCOSMOS

    Get PDF
    We present a group-galaxy cross-correlation analysis using a group catalog produced from the 16,500 spectra from the optical zCOSMOS galaxy survey. Our aim is to perform a consistency test in the redshift range 0.2 < z < 0.8 between the clustering strength of the groups and mass estimates that are based on the richness of the groups. We measure the linear bias of the groups by means of a group-galaxy cross-correlation analysis and convert it into mass using the bias-mass relation for a given cosmology, checking the systematic errors using realistic group and galaxy mock catalogs. The measured bias for the zCOSMOS groups increases with group richness as expected by the theory of cosmic structure formation and yields masses that are reasonably consistent with the masses estimated from the richness directly, considering the scatter that is obtained from the 24 mock catalogs. An exception are the richest groups at high redshift (estimated to be more massive than 10^13.5 M_sun), for which the measured bias is significantly larger than for any of the 24 mock catalogs (corresponding to a 3-sigma effect), which is attributed to the extremely large structure that is present in the COSMOS field at z ~ 0.7. Our results are in general agreement with previous studies that reported unusually strong clustering in the COSMOS field.Comment: 13 pages, 9 figures, published in Ap

    Extreme emission-line galaxies out to z\sim1 in zCOSMOS. I. Sample and characterization of global properties

    Get PDF
    We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 < z < 0.93 selected from the 20k zCOSMOS Bright Survey because of their unusually large emission line equivalent widths. We use multiwavelength COSMOS photometry, HST-ACS I-band imaging and optical zCOSMOS spectroscopy to derive the main global properties of EELGs, such as sizes, masses, SFRs, reliable metallicities from both "direct" and "strong-line" methods. The EELGs are compact (R_50 ~ 1.3 kpc), low-mass (log(M*/Msol)~7-10) galaxies forming stars at unusually high specific SFR (log(sSFR/yr) up to ~ -7) compared to main sequence SFGs of the same stellar mass and redshift. At UV wavelengths, the EELGs are luminous and show high surface brightness and include strong Lyα\alpha emitters, as revealed by GALEX spectroscopy. We show that zCOSMOS EELGs are high-ionization, low-metallicity systems, with median 12+log(O/H)=8.16, including a handful of extremely metal-deficient galaxies (<10% solar). While ~80% of the EELGs show non-axisymmetric morphologies, including clumpy and tadpole galaxies, we find that ~29% of them show additional low surface-brightness features, which strongly suggest recent or ongoing interactions. As star-forming dwarfs in the local Universe, EELGs are most often found in relative isolation. While only very few EELGs belong to compact groups, almost one third of them are found in spectroscopically confirmed loose pairs or triplets. We conclude that EELGs are galaxies caught in a transient and probably early period of their evolution, where they are efficiently building-up a significant fraction of their present-day stellar mass in an ongoing galaxy-wide starburst. Therefore, the EELGs constitute an ideal benchmark for comparison studies between low- and high-redshift low-mass star-forming galaxies.Comment: Accepted in A&A. Final replacement to match the version in press. It includes a minor change in the title and a new figur

    The TIANSHAN Radio Experiment for Neutrino Detection

    Full text link
    An antenna array devoted to the autonomous radio-detection of high energy cosmic rays is being deployed on the site of the 21 cm array radio telescope in XinJiang, China. Thanks in particular to the very good electromagnetic environment of this remote experimental site, self-triggering on extensive air showers induced by cosmic rays has been achieved with a small scale prototype of the foreseen antenna array. We give here a detailed description of the detector and present the first detection of extensive air showers with this prototype.Comment: 37 pages, 15 figures. Astroparticle Physics (in press

    The zCOSMOS redshift survey : Influence of luminosity, mass and environment on the galaxy merger rate

    Full text link
    The contribution of major mergers to galaxy mass assembly along cosmic time is an important ingredient to the galaxy evolution scenario. We aim to measure the evolution of the merger rate for both luminosity/mass selected galaxy samples and investigate its dependence with the local environment. We use a sample of 10644 spectroscopically observed galaxies from the zCOSMOS redshift survey to identify pairs of galaxies destined to merge, using only pairs for which the velocity difference and projected separation of both components with a confirmed spectroscopic redshift indicate a high probability of merging. We have identified 263 spectroscopically confirmed pairs with r_p^{max} = 100 h^{-1} kpc. We find that the density of mergers depends on luminosity/mass, being higher for fainter/less massive galaxies, while the number of mergers a galaxy will experience does not depends significantly on its intrinsic luminosity but rather on its stellar mass. We find that the pair fraction and merger rate increase with local galaxy density, a property observed up to redshift z=1. We find that the dependence of the merger rate on the luminosity or mass of galaxies is already present up to redshifts z=1, and that the evolution of the volumetric merger rate of bright (massive) galaxies is relatively flat with redshift with a mean value of 3*10^{-4} (8*10^{-5} respectively) mergers h^3 Mpc^{-3} Gyr^{-1}. The dependence of the merger rate with environment indicates that dense environments favors major merger events as can be expected from the hierarchical scenario. The environment therefore has a direct impact in shapping-up the mass function and its evolution therefore plays an important role on the mass growth of galaxies along cosmic time.Comment: submitted to A&A, 17 pages, 12 figure
    corecore