5,439 research outputs found

    Bioassay Analysis Using R

    Get PDF
    We describe an add-on package for the language and environment R which allows simultaneous fitting of several non-linear regression models. The focus is on analysis of dose response curves, but the functionality is applicable to arbitrary non-linear regression models. Features of the package is illustrated in examples.

    Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST

    Full text link
    Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will have the unique capability to detect thousands of gamma-ray blazars to redshifts of at least z=4, with sufficient angular resolution to allow identification of a large fraction of their optical counterparts. By combining established models of the gamma-ray blazar luminosity function, two different calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated fluxes and redshifts for the blazars that GLAST would detect, we demonstrate that these gamma-ray blazars have the potential to be a highly effective probe of the optical-UV EBL.Comment: 15 pages, AASTeX, 3 eps figures, accepted for publication in Ap

    Formation of a topological non-Fermi liquid in MnSi

    Full text link
    Fermi liquid theory provides a remarkably powerful framework for the description of the conduction electrons in metals and their ordering phenomena, such as superconductivity, ferromagnetism, and spin- and charge-density-wave order. A different class of ordering phenomena of great interest concerns spin configurations that are topologically protected, that is, their topology can be destroyed only by forcing the average magnetization locally to zero. Examples of such configurations are hedgehogs (points at which all spins are either pointing inwards or outwards) or vortices. A central question concerns the nature of the metallic state in the presence of such topologically distinct spin textures. Here we report a high-pressure study of the metallic state at the border of the skyrmion lattice in MnSi, which represents a new form of magnetic order composed of topologically non-trivial vortices. When long-range magnetic order is suppressed under pressure, the key characteristic of the skyrmion lattice - that is, the topological Hall signal due to the emergent magnetic flux associated with their topological winding - is unaffected in sign or magnitude and becomes an important characteristic of the metallic state. The regime of the topological Hall signal in temperature, pressure and magnetic field coincides thereby with the exceptionally extended regime of a pronounced non-Fermi-liquid resistivity. The observation of this topological Hall signal in the regime of the NFL resistivity suggests empirically that spin correlations with non-trivial topological character may drive a breakdown of Fermi liquid theory in pure metals

    Electrostatic Characterization of Lunar Dust Simulants

    Get PDF
    Lunar dust can jeopardize exploration activities due to its ability to cling to most surfaces. In this paper, we report on our measurements of the electrostatic properties of the lunar soil simulants. Methods have been developed to measure the volume resistivity, dielectric constant, chargeability, and charge decay of lunar soil. While the first two parameters have been measured in the past [Olhoeft 1974], the last two have never been measured directly on the lunar regolith or on any of the Apollo samples. Measurements of the electrical properties of the lunar samples are being performed in an attempt to answer important problems that must be solved for the development of an effective dust mitigation technology, namely, how much charge can accumulate on the dust and how long does the charge remain on surfaces. The measurements will help develop coatings that are compatible with the intrinsic electrostatic properties of the lunar regolith

    Scoping biological indicators of soil quality Phase II. Defra Final Contract Report SP0534

    Get PDF
    This report presents results from a field assessment of a limited suite of potential biological indicators of soil quality to investigate their suitability for national-scale soil monitoring

    A practical approach to estimate resting energy expenditure in frail elderly people

    Get PDF
    Objectives: Some prediction equations of resting energy expenditure (REE) are available and can be used in clinical wards to determine energy requirements of patients. The aim of the present study was to assess the accuracy of those equations in sick elderly patients, using the Bland & Altman methods with our database of 187 REE measurements.Design: The 3 equations tested were Harris & Benedict equation of 1919, WHO/FAO/UNU equation of 1985 and Fredrix et al. equation of 1990. In addition, three models developed from the present data were tested.Results: The present study shows that the Fredrix et al equation gave an accurate prediction of REE without significant bias along the whole range of REE. It also shows that under-weight sick elderly patients (BMI ≤ 21 kg/m2) had a greater weight-adjusted REE than their normal weight counterparts.Conclusion: A simple formula using a factor multiplying body weight, i.e. 22 kcal/kg/d in under-weight and 19 kcal/kg/d in normal weight sick elderly was accurate to predicting REE and bias was not influenced by the level of REE. This model included half of the group in the range of ±10% of the difference between predicted REE and measured REE, but the confidence interval of the bias was ±400 kcal/d. Conversely, the Harris & Benedict and WHO formulae did accurately predict REE

    Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

    Full text link
    Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical variables of the system. We apply this model to the logistic map and examine the behavior of the control parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that this system exhibits adaptation to the edge of chaos.Comment: 3 figure

    Defining an additivity framework for mixture research in inducible whole-cell biosensors

    Get PDF
    A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differential maximal effects among analytes and response inhibition beyond the máximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition, the approach also allowed identification and quantification of departures from additivity (interactions) among analytes. The biosensor was found to respond in a near additive way to heavy metal mixtures except when Hg, Co and Ag were present, in which case strong interactions occurred. The method is a useful contribution for the whole cell biosensors discipline and related areas allowing to perform appropriate assessment of mixture effects in non-monotonic dose-response frameworksThis research was supported by MINECO grants CGL2010-15675 and CTM2013-45775-C2-2-R
    corecore