689 research outputs found
A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371
We analyse all available X-ray observations of X1822-371 made with
XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not
simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to
constrain the spectral shape of the continuum emission well. We use the model
already proposed for this source, consisting of a Comptonised component
absorbed by interstellar matter and partially absorbed by local neutral matter,
and we added a Gaussian feature in absorption at keV. This addition
significantly improves the fit and flattens the residuals between 0.6 and 0.8
keV. We interpret the Gaussian feature in absorption as a cyclotron resonant
scattering feature (CRSF) produced close to the neutron star surface and derive
the magnetic field strength at the surface of the neutron star, G for a radius of 10 km. We derive the pulse period in the
EPIC-pn data to be 0.5928850(6) s and estimate that the spin period derivative
of X1822-371 is s/s using all available
pulse period measurements. Assuming that the intrinsic luminosity of
X1822-371is at the Eddington limit and using the values of spin period and spin
period derivative of the source, we constrain the neutron star and companion
star masses. We find the neutron star and the companion star masses to be M and M, respectively, for a
neutron star radius of 10 km.In a self-consistent scenario in which X1822-371
is spinning-up and accretes at the Eddington limit, we estimate that the
magnetic field of the neutron star is G for a
neutron star radius of 10 km. If our interpretation is correct, the Gaussian
absorption feature near 0.7 keV is the very first detection of a CRSF below 1
keV in a LMXB. (abridged)Comment: 14 pages, 12 figures, accepted for publication in A&
Nonextensive thermodynamic functions in the Schr\"odinger-Gibbs ensemble
Schr\"odinger suggested that thermodynamical functions cannot be based on the
gratuitous allegation that quantum-mechanical levels (typically the orthogonal
eigenstates of the Hamiltonian operator) are the only allowed states for a
quantum system [E. Schr\"odinger, Statistical Thermodynamics (Courier Dover,
Mineola, 1967)]. Different authors have interpreted this statement by
introducing density distributions on the space of quantum pure states with
weights obtained as functions of the expectation value of the Hamiltonian of
the system.
In this work we focus on one of the best known of these distributions, and we
prove that, when considered in composite quantum systems, it defines partition
functions that do not factorize as products of partition functions of the
noninteracting subsystems, even in the thermodynamical regime. This implies
that it is not possible to define extensive thermodynamical magnitudes such as
the free energy, the internal energy or the thermodynamic entropy by using
these models. Therefore, we conclude that this distribution inspired by
Schr\"odinger's idea can not be used to construct an appropriate quantum
equilibrium thermodynamics.Comment: 32 pages, revtex 4.1 preprint style, 5 figures. Published version
with several changes with respect to v2 in text and reference
Recommended from our members
Transcranial Doppler Monitoring of Intracranial Pressure Plateau Waves
: Transcranial Doppler (TCD) has been used to estimate ICP noninvasively (nICP); however, its accuracy varies depending on different types of intracranial hypertension. Given the high specificity of TCD to detect cerebrovascular events, this study aimed to compare four TCD-based nICP methods during plateau waves of ICP.
: A total of 36 plateau waves were identified in 27 patients (traumatic brain injury) with TCD, ICP, and ABP simultaneous recordings. The nICP methods were based on: (1) interaction between flow velocity (FV) and ABP using a "black-box" mathematical model (\textit{nICP_BB}); (2) diastolic FV (\textit{nICP_FV}); (3) critical closing pressure (\textit{nICP_CrCP}), and (4) pulsatility index (\textit{nICP_PI}). Analyses focused on relative changes in time domain between ICP and noninvasive estimators during plateau waves and the magnitude of changes ( between baseline and plateau) in real ICP and its estimators. A ROC analysis for an ICP threshold of 35 mmHg was performed.
: In time domain, \textit{nICP_PI, nICP_BB,} and \textit{nICP_CrCP} presented similar correlations: 0.80 ± 0.24, 0.78 ± 0.15, and 0.78 ± 0.30, respectively. \textit{nICP_FV} presented a weaker correlation (R = 0.62 ± 0.46). Correlations between ∆ICP and ∆nICP were better represented by \textit{nICP_CrCP} and BB, R = 0.48, 0.44 (p < 0.05), respectively. \textit{nICP_FV} and presented nonsignificant correlations. ROC analysis showed moderate to good areas under the curve for all methods: \textit{nICP_BB}, 0.82; \textit{nICP_FV}, 0.77; \textit{nICP_CrCP}, 0.79; and \textit{nICP_PI}, 0.81.
: Changes of ICP in time domain during plateau waves were replicated by nICP methods with strong correlations. In addition, the methods presented high performance for detection of intracranial hypertension. However, absolute accuracy for noninvasive ICP assessment using TCD is still low and requires further improvement
GRO J1744-28: an intermediate B-field pulsar in a low mass X-ray binary
The bursting pulsar, GRO J1744-28, went again in outburst after 18
years of quiescence in mid-January 2014. We studied the broad-band, persistent,
X-ray spectrum using X-ray data from a XMM-Newton observation, performed almost
at the peak of the outburst, and from a close INTEGRAL observation, performed 3
days later, thus covering the 1.3-70.0 keV band. The spectrum shows a complex
continuum shape that cannot be modelled with standard high-mass X-ray pulsar
models, nor by two-components models. We observe broadband and peaked residuals
from 4 to 15 keV, and we propose a self-consistent interpretation of these
residuals, assuming they are produced by cyclotron absorption features and by a
moderately smeared, highly ionized, reflection component. We identify the
cyclotron fundamental at 4.7 keV, with hints for two possible harmonics
at 10.4 keV and 15.8 keV. The position of the cyclotron fundamental allows an
estimate for the pulsar magnetic field of (5.27 0.06) 10
G, if the feature is produced at its surface. From the dynamical and
relativistic smearing of the disk reflected component, we obtain a lower limit
estimate for the truncated accretion disk inner radius, ( 100 R),
and for the inclination angle (18-48). We also detect the
presence of a softer thermal component, that we associate with the emission
from an accretion disk truncated at a distance from the pulsar of 50-115 R.
From these estimates, we derive the magneto-spheric radius for disk accretion
to be 0.2 times the classical Alfv\'en radius for radial accretion.Comment: Accepted for publication in MNRA
Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible?
Although intracranial pressure (ICP) is essential to guide management of patients suffering from acute brain diseases, this signal is often neglected outside the neurocritical care environment. This is mainly attributed to the intrinsic risks of the available invasive techniques, which have prevented ICP monitoring in many conditions affecting the intracranial homeostasis, from mild traumatic brain injury to liver encephalopathy. In such scenario, methods for non-invasive monitoring of ICP (nICP) could improve clinical management of these conditions. A review of the literature was performed on PUBMED using the search keywords 'Transcranial Doppler non-invasive intracranial pressure.' Transcranial Doppler (TCD) is a technique primarily aimed at assessing the cerebrovascular dynamics through the cerebral blood flow velocity (FV). Its applicability for nICP assessment emerged from observation that some TCD-derived parameters change during increase of ICP, such as the shape of FV pulse waveform or pulsatility index. Methods were grouped as: based on TCD pulsatility index; aimed at non-invasive estimation of cerebral perfusion pressure and model-based methods. Published studies present with different accuracies, with prediction abilities (AUCs) for detection of ICP ≥20 mmHg ranging from 0.62 to 0.92. This discrepancy could result from inconsistent assessment measures and application in different conditions, from traumatic brain injury to hydrocephalus and stroke. Most of the reports stress a potential advantage of TCD as it provides the possibility to monitor changes of ICP in time. Overall accuracy for TCD-based methods ranges around ±12 mmHg, with a great potential of tracing dynamical changes of ICP in time, particularly those of vasogenic nature.Cambridge Commonwealth, European & International Trust Scholarship (University of Cambridge) provided financial support in the form of Scholarship funding for DC. Woolf Fisher Trust provided financial support in the form of Scholarship funding for JD. Gates Cambridge Trust provided financial support in the form of Scholarship funding for XL. CNPQ provided financial support in the form of Scholarship funding for BCTC (Research Project 203792/2014-9). NIHR Brain Injury Healthcare Technology Co-operative, Cambridge, UK provided financial support in the form of equipment funding for DC, BC and MC. The sponsors had no role in the design or conduct of this manuscript.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s12028-016-0258-
L-functions of Symmetric Products of the Kloosterman Sheaf over Z
The classical -variable Kloosterman sums over the finite field
give rise to a lisse -sheaf on , which we call the Kloosterman
sheaf. Let be the
-function of the -fold symmetric product of . We
construct an explicit virtual scheme of finite type over such that the -Euler factor of the zeta function of coincides with
. We also prove
similar results for and .Comment: 16 page
- …
