1,607 research outputs found
Disorder-sensitive superconductivity in the iron silicide LuFeSi studied by the Lu-site substitutions
We studied effect of non-magnetic and magnetic impurities on
superconductivity in LuFeSi by small amount substitution of the Lu
site, which investigated structural, magnetic, and electrical properties of
non-magnetic (LuSc)FeSi,
(LuY)FeSi, and magnetic
(LuDy)FeSi. The rapid depression of by
non-magnetic impurities in accordance with the increase of residual resistivity
reveals the strong pair breaking dominated by disorder. We provide compelling
evidence for the sign reversal of the superconducting order parameter in
LuFeSi.Comment: 4 pages, 5 figure
Specific heat evidence for two-gap superconductivity in ternary-iron silicide LuFeSi
We report low-temperature specific heat studies on single-crystalline
ternary-iron silicide superconductor LuFeSi with = 6.1 K
down to . We confirm a reduced normalized jump in specific heat at
, and find that the specific heat divided by temperature shows
sudden drop at and goes to zero with further decreasing
temperature. These results indicate the presence of two distinct
superconducting gaps in LuFeSi, similar to a typical two-gap
superconductor MgB. We also report Hall coefficients, band structure
calculation, and the anisotropy of upper critical fields for
LuFeSi, which support the anisotropic multiband nature and
reinforce the existence of two superconducting gaps in
LuFeSi.Comment: 5 pages, 5 figure
The Finite Field Kakeya Problem
A Besicovitch set in AG(n,q) is a set of points containing a line in every
direction. The Kakeya problem is to determine the minimal size of such a set.
We solve the Kakeya problem in the plane, and substantially improve the known
bounds for n greater than 4.Comment: 13 page
Surfaces containing a family of plane curves not forming a fibration
We complete the classification of smooth surfaces swept out by a
1-dimensional family of plane curves that do not form a fibration. As a
consequence, we characterize manifolds swept out by a 1-dimensional family of
hypersurfaces that do not form a fibration.Comment: Author's post-print, final version published online in Collect. Mat
Free-energy transition in a gas of non-interacting nonlinear wave-particles
We investigate the dynamics of a gas of non-interacting particle-like soliton
waves, demonstrating that phase transitions originate from their collective
behavior. This is predicted by solving exactly the nonlinear equations and by
employing methods of the statistical mechanics of chaos. In particular, we show
that a suitable free energy undergoes a metamorphosis as the input excitation
is increased, thereby developing a first order phase transition whose
measurable manifestation is the formation of shock waves. This demonstrates
that even the simplest phase-space dynamics, involving independent (uncoupled)
degrees of freedom, can sustain critical phenomena.Comment: 4 pages, 3 figure
Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission
In high-temperature superconductivity, the process that leads to the
formation of Cooper pairs, the fundamental charge carriers in any
superconductor, remains mysterious. We use a femtosecond laser pump pulse to
perturb superconducting Bi2Sr2CaCu2O8+{\delta}, and study subsequent dynamics
using time- and angle-resolved photoemission and infrared reflectivity probes.
Gap and quasiparticle population dynamics reveal marked dependencies on both
excitation density and crystal momentum. Close to the d-wave nodes, the
superconducting gap is sensitive to the pump intensity and Cooper pairs
recombine slowly. Far from the nodes pumping affects the gap only weakly and
recombination processes are faster. These results demonstrate a new window into
the dynamical processes that govern quasiparticle recombination and gap
formation in cuprates.Comment: 22 pages, 9 figure
Nonlinear management of the angular momentum of soliton clusters
We demonstrate an original approach to acquire nonlinear control over the
angular momentum of a cluster of solitary waves. Our model, derived from a
general description of nonlinear energy propagation in dispersive media, shows
that the cluster angular momentum can be adjusted by acting on the global
energy input into the system. The phenomenon is experimentally verified in
liquid crystals by observing power-dependent rotation of a two-soliton cluster.Comment: 4 pages, 3 figure
Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry
International audienceIn this study, we measure the extinction efficiency at 532 nm of absorbing aerosol particles coated with a non-absorbing solid and liquid organic shell with coating thickness varying between 5 and 100 nm using cavity ring down aerosol spectrometry. For this purpose, we use nigrosin, an organic black dye, as a model absorbing core and two non-absorbing organic substances as shells, glutaric acid (GA) and Di-Ethyl-Hexyl-Sebacate (DEHS). The measured behavior of the coated particles is consistent with Mie calculations of core-shell particles. Errors between measured and calculated values for nigrosin coated with GA and DEHS are between 0.5% and 10.5% and between 0.5% and 9%, respectively. However, it is evident that the calculations are in better agreement with the measured results for thinner coatings. Possible reasons for these discrepancies are discussed
Chaotic flow and efficient mixing in a micro-channel with a polymer solution
Microscopic flows are almost universally linear, laminar and stationary
because Reynolds number, , is usually very small. That impedes mixing in
micro-fluidic devices, which sometimes limits their performance. Here we show
that truly chaotic flow can be generated in a smooth micro-channel of a uniform
width at arbitrarily low , if a small amount of flexible polymers is added
to the working liquid. The chaotic flow regime is characterized by randomly
fluctuating three-dimensional velocity field and significant growth of the flow
resistance. Although the size of the polymer molecules extended in the flow may
become comparable with the micro-channel width, the flow behavior is fully
compatible with that in a table-top channel in the regime of elastic
turbulence. The chaotic flow leads to quite efficient mixing, which is almost
diffusion independent. For macromolecules, mixing time in this microscopic flow
can be three to four orders of magnitude shorter than due to molecular
diffusion.Comment: 8 pages,7 figure
Shear-induced quench of long-range correlations in a liquid mixture
A static correlation function of concentration fluctuations in a (dilute)
binary liquid mixture subjected to both a concentration gradient and uniform
shear flow is investigated within the framework of fluctuating hydrodynamics.
It is shown that a well-known long-range correlation at
large wave numbers crosses over to a weaker divergent one for wave numbers
satisfying , while an asymptotic shear-controlled
power-law dependence is confirmed at much smaller wave numbers given by , where , , and are the
mass concentration, the rate of the shear, the mass diffusivity and the
kinematic viscosity of the mixture, respectively. The result will provide for
the first time the possibility to observe the shear-induced suppression of a
long-range correlation experimentally by using, for example, a low-angle light
scattering technique.Comment: 8pages, 2figure
- …
