796 research outputs found
Improving medical image perception by hierarchical clustering based segmentation
It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect. Currently computer-aided detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions". The goal of this paper is to explore the possibility of using hierarchical clustering based segmentation (HSC), as a perceptual aid, to improve the performance of the reader
Improving medical image perception by hierarchical clustering based segmentation
It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect [1]. Currently Computer-Aided Detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions" [2]. The goal of this paper is to explore the possibility of using Hierarchical Clustering based Segmentation (HCS) [3], as a perceptual aid, to improve the performance of the reader
Iron environment non-equivalence in both octahedral and tetrahedral sites in NiFe2O4 nanoparticles: study using Mössbauer spectroscopy with a high velocity resolution
Mössbauer spectrum of NiFe2O4 nanoparticles was measured at room temperature in 4096 channels. This spectrum was fitted using various models, consisting of different numbers of magnetic sextets from two to twelve. Non-equivalence of the 57Fe microenvironments due to various probabilities of different Ni2+ numbers surrounding the octahedral and tetrahedral sites was evaluated and at least 5 different microenvironments were shown for both sites. The fit of the Mössbauer spectrum of NiFe 2O4 nanoparticles using ten sextets showed some similarities in the histograms of relative areas of sextets and calculated probabilities of different Ni2+ numbers in local microenvironments. © 2012 American Institute of Physics
Genotyping of Entamoeba species in South Africa: diversity, stability, and transmission patterns within families.
Using a recently described polymerase chain reaction-based DNA typing method for Entamoeba histolytica and E. dispar, we investigated the genetic diversity of these species in a geographically restricted region of South Africa. Patterns were stable over time in the same infection, and, with few exceptions, infected family members carried the same strain. However, both species exhibited remarkable variation, with no 2 family groups being infected with the same strain of E. histolytica. Mixed infections were rare. The results indicate that this typing method will be useful in identifying epidemiological linkage between infections
PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation
Nanomaterials have been actively pursued for biological and medical
applications in recent years. Here, we report the synthesis of several new
poly(ethylene glycol) grafted branched-polymers for functionalization of
various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and
gold nanorods (NRs), affording high aqueous solubility and stability for these
materials. We synthesize different surfactant polymers based upon
poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene)
(PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching
lipophilic species such as pyrene or phospholipid, which bind to nanomaterials
via robust physisorption. Additionally, the remaining carboxylic acids on gPGA
or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing
extended hydrophilic groups, affording polymeric amphiphiles. We show that
single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the
polymers exhibit high stability in aqueous solutions at different pHs, at
elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit
remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into
mice, far exceeding the previous record of 5.4 h. The ultra-long blood
circulation time suggests greatly delayed clearance of nanomaterials by the
reticuloendothelial system (RES) of mice, a highly desired property for in vivo
applications of nanomaterials, including imaging and drug delivery
Morphology of supported polymer electrolyte ultra-thin films: a numerical study
Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM
fuel cell catalyst layers has significant impact on the electrochemical
activity and transport phenomena that determine cell performance. In those
regions, Nafion can be found as an ultra-thin film, coating the catalyst and
the catalyst support surfaces. The impact of the hydrophilic/hydrophobic
character of these surfaces on the structural formation of the films has not
been sufficiently explored yet. Here, we report about Molecular Dynamics
simulation investigation of the substrate effects on the ionomer ultra-thin
film morphology at different hydration levels. We use a mean-field-like model
we introduced in previous publications for the interaction of the hydrated
Nafion ionomer with a substrate, characterized by a tunable degree of
hydrophilicity. We show that the affinity of the substrate with water plays a
crucial role in the molecular rearrangement of the ionomer film, resulting in
completely different morphologies. Detailed structural description in different
regions of the film shows evidences of strongly heterogeneous behavior. A
qualitative discussion of the implications of our observations on the PEMFC
catalyst layer performance is finally proposed
Morphological transformation of silver nanoparticles from commercial products: Modeling from product incorporation, weathering through use scenarios, and leaching into wastewater
There is increasing interest in the environmental fate and effects of engineered nanomaterials due to their ubiquitous use in consumer products. I
Computer-Aided Design of Nanoceria Structures as Enzyme Mimetic Agents:The Role of Bodily Electrolytes on Maximizing Their Activity
Nanoceria, typically used for “clean-air” catalytic converter technologies because of its ability to capture, store, and release oxygen, is the same material that has the potential to be used in nanomedicine. Specifically, nanoceria can be used to control oxygen content in cellular environments; as a “nanozyme”, nanoceria mimics enzymes by acting as an antioxidant agent. The computational design procedures for predicting active materials for catalytic converters can therefore be used to design active ceria nanozymes. Crucially, the ceria nanomedicine is not a molecule; rather, it is a crystal and exploits its unique crystal properties. Here, we use ab initio and classical computer modeling, together with the experiment, to design structures for nanoceria that maximize its nanozymetic activity. We predict that the optimum nanoparticle shape is either a (truncated) polyhedral or a nanocube to expose (active) CeO2{100} surfaces. It should also contain oxygen vacancies and surface hydroxyl species. We also show that the surface structures strongly affect the biological activity of nanoceria. Analogous to catalyst poisoning, phosphorus “poisoning”, the interaction of nanoceria with phosphate, a common bodily electrolyte, emanates from phosphate ions binding strongly to CeO2{100} surfaces, inhibiting oxygen capture and release and hence its ability to act as a nanozyme. Conversely, the phosphate interaction with {111} surfaces is weak, and therefore, these surfaces protect the nanozyme against poisoning. The atom-level understanding presented here also illuminates catalytic processes and poisoning in “clean-air” or fuel-cell technologies because the mechanism underpinning and exploited in each technology, oxygen capture, storage, and release, is identical
- …
