981 research outputs found

    On Eigenvalue spacings for the 1-D Anderson model with singular site distribution

    Full text link
    We study eigenvalue spacings and local eigenvalue statistics for 1D lattice Schrodinger operators with Holder regular potential, obtaining a version of Minami's inequality and Poisson statistics for the local eigenvalue spacings. The main additional new input are regular properties of the Furstenberg measures and the density of states obtained in some of the author's earlier work.Comment: 13 page

    Quantum Graphs II: Some spectral properties of quantum and combinatorial graphs

    Full text link
    The paper deals with some spectral properties of (mostly infinite) quantum and combinatorial graphs. Quantum graphs have been intensively studied lately due to their numerous applications to mesoscopic physics, nanotechnology, optics, and other areas. A Schnol type theorem is proven that allows one to detect that a point belongs to the spectrum when a generalized eigenfunction with an subexponential growth integral estimate is available. A theorem on spectral gap opening for ``decorated'' quantum graphs is established (its analog is known for the combinatorial case). It is also shown that if a periodic combinatorial or quantum graph has a point spectrum, it is generated by compactly supported eigenfunctions (``scars'').Comment: 4 eps figures, LATEX file, 21 pages Revised form: a cut-and-paste blooper fixe

    Detailed balance in Horava-Lifshitz gravity

    Full text link
    We study Horava-Lifshitz gravity in the presence of a scalar field. When the detailed balance condition is implemented, a new term in the gravitational sector is added in order to maintain ultraviolet stability. The four-dimensional theory is of a scalar-tensor type with a positive cosmological constant and gravity is nonminimally coupled with the scalar and its gradient terms. The scalar field has a double-well potential and, if required to play the role of the inflation, can produce a scale-invariant spectrum. The total action is rather complicated and there is no analog of the Einstein frame where Lorentz invariance is recovered in the infrared. For these reasons it may be necessary to abandon detailed balance. We comment on open problems and future directions in anisotropic critical models of gravity.Comment: 10 pages. v2: discussion expanded and improved, section on generalizations added, typos corrected, references added, conclusions unchange

    Linear instability criteria for ideal fluid flows subject to two subclasses of perturbations

    Full text link
    In this paper we examine the linear stability of equilibrium solutions to incompressible Euler's equation in 2- and 3-dimensions. The space of perturbations is split into two classes - those that preserve the topology of vortex lines and those in the corresponding factor space. This classification of perturbations arises naturally from the geometric structure of hydrodynamics; our first class of perturbations is the tangent space to the co-adjoint orbit. Instability criteria for equilibrium solutions are established in the form of lower bounds for the essential spectral radius of the linear evolution operator restricted to each class of perturbation.Comment: 29 page

    Wavefront sets and polarizations on supermanifolds

    Get PDF
    In this paper we develop the foundations for microlocal analysis on supermanifolds. Making use of pseudodifferential operators on supermanifolds as introduced by Rempel and Schmitt, we define a suitable notion of super wavefront set for superdistributions which generalizes Dencker's polarization sets for vector-valued distributions to supergeometry. In particular, our super wavefront sets detect polarization information of the singularities of superdistributions. We prove a refined pullback theorem for superdistributions along supermanifold morphisms, which as a special case establishes criteria when two superdistributions may be multiplied. As an application of our framework, we study the singularities of distributional solutions of a supersymmetric field theory

    Classical and quantum ergodicity on orbifolds

    Full text link
    We extend to orbifolds classical results on quantum ergodicity due to Shnirelman, Colin de Verdi\`ere and Zelditch, proving that, for any positive, first-order self-adjoint elliptic pseudodifferential operator P on a compact orbifold X with positive principal symbol p, ergodicity of the Hamiltonian flow of p implies quantum ergodicity for the operator P. We also prove ergodicity of the geodesic flow on a compact Riemannian orbifold of negative sectional curvature.Comment: 14 page

    Mixing Quantum and Classical Mechanics

    Get PDF
    Using a group theoretical approach we derive an equation of motion for a mixed quantum-classical system. The quantum-classical bracket entering the equation preserves the Lie algebra structure of quantum and classical mechanics: The bracket is antisymmetric and satisfies the Jacobi identity, and, therefore, leads to a natural description of interaction between quantum and classical degrees of freedom. We apply the formalism to coupled quantum and classical oscillators and show how various approximations, such as the mean-field and the multiconfiguration mean-field approaches, can be obtained from the quantum-classical equation of motion.Comment: 31 pages, LaTeX2

    Quantization of the Riemann Zeta-Function and Cosmology

    Get PDF
    Quantization of the Riemann zeta-function is proposed. We treat the Riemann zeta-function as a symbol of a pseudodifferential operator and study the corresponding classical and quantum field theories. This approach is motivated by the theory of p-adic strings and by recent works on stringy cosmological models. We show that the Lagrangian for the zeta-function field is equivalent to the sum of the Klein-Gordon Lagrangians with masses defined by the zeros of the Riemann zeta-function. Quantization of the mathematics of Fermat-Wiles and the Langlands program is indicated. The Beilinson conjectures on the values of L-functions of motives are interpreted as dealing with the cosmological constant problem. Possible cosmological applications of the zeta-function field theory are discussed.Comment: 14 pages, corrected typos, references and comments adde

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Mixed Weyl Symbol Calculus and Spectral Line Shape Theory

    Get PDF
    A new and computationally viable full quantum version of line shape theory is obtained in terms of a mixed Weyl symbol calculus. The basic ingredient in the collision--broadened line shape theory is the time dependent dipole autocorrelation function of the radiator-perturber system. The observed spectral intensity is the Fourier transform of this correlation function. A modified form of the Wigner--Weyl isomorphism between quantum operators and phase space functions (Weyl symbols) is introduced in order to describe the quantum structure of this system. This modification uses a partial Wigner transform in which the radiator-perturber relative motion degrees of freedom are transformed into a phase space dependence, while operators associated with the internal molecular degrees of freedom are kept in their original Hilbert space form. The result of this partial Wigner transform is called a mixed Weyl symbol. The star product, Moyal bracket and asymptotic expansions native to the mixed Weyl symbol calculus are determined. The correlation function is represented as the phase space integral of the product of two mixed symbols: one corresponding to the initial configuration of the system, the other being its time evolving dynamical value. There are, in this approach, two semiclassical expansions -- one associated with the perturber scattering process, the other with the mixed symbol star product. These approximations are used in combination to obtain representations of the autocorrelation that are sufficiently simple to allow numerical calculation. The leading O(\hbar^0) approximation recovers the standard classical path approximation for line shapes. The higher order O(\hbar^1) corrections arise from the noncommutative nature of the star product.Comment: 26 pages, LaTeX 2.09, 1 eps figure, submitted to 'J. Phys. B.
    corecore