3,583 research outputs found

    The quantum-to-classical transition: contraction of associative products

    Full text link
    The quantum-to-classical transition is considered from the point of view of contractions of associative algebras. Various methods and ideas to deal with contractions of associative algebras are discussed that account for a large family of examples. As an instance of them, the commutative algebra of functions in phase space, corresponding to classical physical observables, is obtained as a contraction of the Moyal star-product which characterizes the quantum case. Contractions of associative algebras associated to Lie algebras are discussed, in particular the Weyl-Heisenberg and SU(2)SU(2) groups are considered.Comment: 21 pages, 1 figur

    Groupoids and the tomographic picture of quantum mechanics

    Full text link
    The existing relation between the tomographic description of quantum states and the convolution algebra of certain discrete groupoids represented on Hilbert spaces will be discussed. The realizations of groupoid algebras based on qudit, photon-number (Fock) states and symplectic tomography quantizers and dequantizers will be constructed. Conditions for identifying the convolution product of groupoid functions and the star--product arising from a quantization--dequantization scheme will be given. A tomographic approach to construct quasi--distributions out of suitable immersions of groupoids into Hilbert spaces will be formulated and, finally, intertwining kernels for such generalized symplectic tomograms will be evaluated explicitly

    Vanadium gate-controlled Josephson half-wave nanorectifier

    Full text link
    Recently, the possibility to tune the critical current of conventional metallic superconductors via electrostatic gating was shown in wires, Josephson weak-links and superconductor-normal metal-superconductor junctions. Here we exploit such a technique to demonstrate a gate-controlled vanadium-based Dayem nano-bridge operated as a \emph{half-wave} rectifier at 33 K. Our devices exploit the gate-driven modulation of the critical current of the Josephson junction, and the resulting steep variation of its normal-state resistance, to convert an AC signal applied to the gate electrode into a DC one across the junction. All-metallic superconducting gated rectifiers could provide the enabling technology to realize tunable photon detectors and diodes useful for superconducting electronics circuitry.Comment: 5 pages, 4 figure

    Optical supercavitation in soft-matter

    Full text link
    We investigate theoretically, numerically and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion, and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.Comment: 4 pages, 5 figures, revised version: corrected typos and reference

    39-K Bose-Einstein condensate with tunable interactions

    Full text link
    We produce a Bose-Einstein condensate of 39-K atoms. Condensation of this species with naturally small and negative scattering length is achieved by a combination of sympathetic cooling with 87-Rb and direct evaporation, exploiting the magnetic tuning of both inter- and intra-species interactions at Feshbach resonances. We explore tunability of the self-interactions by studying the expansion and the stability of the condensate. We find that a 39-K condensate is interesting for future experiments requiring a weakly interacting Bose gas.Comment: 5 page

    Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture

    Full text link
    The route toward a Bose-Einstein condensate of dipolar molecules requires the ability to efficiently associate dimers of different chemical species and transfer them to the stable rovibrational ground state. Here, we report on recent spectroscopic measurements of two weakly bound molecular levels and newly observed narrow d-wave Feshbach resonances. The data are used to improve the collisional model for the Bose-Bose mixture 41K87Rb, among the most promising candidates to create a molecular dipolar BEC.Comment: 13 pages, 3 figure

    Realization of associative products in terms of Moyal and tomographic symbols

    Full text link
    The quantizer-dequantizer method allows to construct associative products on any measure space. Here we consider an inverse problem: given an associative product is it possible to realize it within the quantizer-dequantizer framework? The answer is positive in finite dimensions and we give a few examples in infinite dimensions.Comment: 13 pages. To appear on Physica Script

    A tomographic setting for quasi-distribution functions

    Get PDF
    The method of constructing the tomographic probability distributions describing quantum states in parallel with density operators is presented. Known examples of Husimi-Kano quasi-distribution and photon number tomography are reconsidered in the new setting. New tomographic schemes based on coherent states and nonlinear coherent states of deformed oscillators, including q-oscillators, are suggested. The associated identity decompositions providing Gram-Schmidt operators are explicitly given, and contact with the Agarwal-Wolf Ω\Omega-operator ordering theory is made.Comment: A slightly enlarged version in which contact with the Agarwal-Wolf Ω\Omega-operator ordering theory is mad

    Feshbach resonances in ultracold K(39)

    Full text link
    We discover several magnetic Feshbach resonances in collisions of ultracold K(39) atoms, by studying atom losses and molecule formation. Accurate determination of the magnetic-field resonance locations allows us to optimize a quantum collision model for potassium isotopes. We employ the model to predict the magnetic-field dependence of scattering lengths and of near-threshold molecular levels. Our findings will be useful to plan future experiments on ultracold potassium atoms and molecules.Comment: 7 pages, 6 figure

    Towards a knowledge-based system to assist the Brazilian data-collecting system operation

    Get PDF
    A study is reported which was carried out to show how a knowledge-based approach would lead to a flexible tool to assist the operation task in a satellite-based environmental data collection system. Some characteristics of a hypothesized system comprised of a satellite and a network of Interrogable Data Collecting Platforms (IDCPs) are pointed out. The Knowledge-Based Planning Assistant System (KBPAS) and some aspects about how knowledge is organized in the IDCP's domain are briefly described
    corecore