636 research outputs found
Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules
Release studies constitute a fundamental part of the nanovector characterization. However, it can be difficult to correctly assess the release of lipophilic compounds from lipid nanocarriers using conventional assays. Previously, we proposed a method including an extraction with oil to measure the loading stability of lipophilic dyes in lipid nanocapsules (LNCs). The method indicated a rapid release of Nile Red from LNCs, while the loading of lipophilic carbocyanine dyes remained stable. This method, although interesting for a rapid screening of the fluorescence labeling stability of nanocarriers, is far from what happens in vivo, where lipid acceptor phases are nanostructured. Here, lipophilic dye loading stability has been assessed, by monitoring dye transfer from LNCs toward stable colloidal lipid nanocompartments, i.e. non-loaded LNCs, using new methodology based on size exclusion chromatography (SEC) and Förster Resonance Energy Transfer (FRET). Dye transfer between LNCs and THP-1 cells (as model for circulating cells) has also been studied by FACS. The assays reveal an almost instantaneous transfer of Nile Red between LNCs, from LNCs to THP-1 cells, between THP-1 cells, and a reversal transfer from THP-1 cells to LNCs. On the contrary, there was no detectable transfer of the lipophilic carbocyanine dyes. Dye release was also analyzed using dialyses, which only revealed a very slow release of Nile Red from LNCs, demonstrating the weakness of membrane based assays for investigations of the lipophilic compound loading stability in lipid nanocarriers. These results highlight the importance of using relevant release assays, and the potential risk of an immediate unloading of lipophilic fluorescent dyes from lipid nanocarriers, in the presence of a lipid acceptor nanocompartment. Some misinterpretations of cellular trafficking and in vivo biodistribution of fluorescent nanoparticles should be avoided
Dianion diagnostics in DESIREE: High-sensitivity detection of from a sputter ion source
A sputter ion source with a solid graphite target has been used to produce
dianions with a focus on carbon cluster dianions, , with
. Singly and doubly charged anions from the source were accelerated
together to kinetic energies of 10 keV per atomic unit of charge and injected
into one of the cryogenic (13 K) ion-beam storage rings of the Double
ElectroStatic Ion Ring Experiment facility at Stockholm University. Spontaneous
decay of internally hot dianions injected into the ring
yielded anions with kinetic energies of 20 keV, which were
counted with a microchannel plate detector. Mass spectra produced by scanning
the magnetic field of a analyzing magnet on the ion injection line
reflect the production of internally hot
dianions with lifetimes in the range of tens of microseconds to milliseconds.
In spite of the high sensitivity of this method, no conclusive evidence of
was found while there was a clear
signal with the expect isotopic distribution. An upper limit is deduced for a
signal that is two orders-of-magnitue smaller than that for
. In addition, and
dianions were detected.Comment: 6 pages, 6 figure
Recommended from our members
Anticipatory governance for social-ecological resilience
Anticipation is increasingly central to urgent contemporary debates, from climate change to the global economic crisis. Anticipatory practices are coming to the forefront of political, organizational, and citizens’ society. Research into anticipation, however, has not kept pace with public demand for insights into anticipatory practices, their risks and uses. Where research exists, it is deeply fragmented. This paper seeks to identify how anticipation is defined and understood in the literature and to explore the role of anticipatory practice to address individual, social, and global challenges. We use a resilience lens to examine these questions. We illustrate how varying forms of anticipatory governance are enhanced by multi-scale regional networks and technologies and by the agency of individuals, drawing from an empirical case study on regional water governance of Malaren, Sweden. Finally, we discuss how an anticipatory approach can inform adaptive institutions, decision making, strategy formation, and societal resilience
Population pharmacokinetics of lopinavir and ritonavir in combination with rifampicin-based antitubercular treatment in HIV-infected children
Children with HIV associated tuberculosis often require co-formulated lopinavir/ritonavir (LPV/RTV)-based antiretroviral treatment with rifampicin-based antitubercular treatment (ATT). Rifampicin (RIF), a potent inducer of drug-metabolizing systems, profoundly reduces the bioavailability of LPV. The aims of this study were to develop an integrated population pharmacokinetic (PK) model describing LPV and RTV PK in children with and without concomitant ATT using two different dosing approaches and to estimate doses of LPV/RTV achieving target exposures during ATT in young children
Nanovectors for Neurotherapeutic Delivery Part II: Polymeric Nanoparticles
Despite major advances in intracranial surgery and delivery of drugs to the brain, treatment of neurological diseases remains one of the great medical challenges of our days. The complexity of the organ makes surgical procedures complicated, and conventional systemic delivery of drugs to the brain is hampered by low drug selectivity and low drug partitioning over the blood-brain barrier. Due to the high social and economic impacts related to diseases of the central nervous system, development of new improved treatments of brain related disorders is of significant value, both for the patient and for the society. Nanomedicine is a rapidly growing field in the development of novel therapies for treatments of brain pathologies. The scientific progress in nanotechnology has resulted in several new innovative nano-assemblies, with promising medical potentials. Therapeutic benefits related to the use of nanovectors includes, reduced chemical and enzymatic degradation of drugs, increased uptake over biological barriers, improved selectivity by surface modification using targeting ligands, and reduced toxic side effects in non-target tissue. This review discusses various applications of polymeric nanoparticles as nanovectors in treatment of neuronal diseases, specifically illustrated for Alzheimer’s and Parkinson’s diseases and Glioblastoma
Phosphorylated Nucleolin Interacts with Translationally Controlled Tumor Protein during Mitosis and with Oct4 during Interphase in ES Cells
BACKGROUND: Reprogramming of somatic cells for derivation of either embryonic stem (ES) cells, by somatic cell nuclear transfer (SCNT), or ES-like cells, by induced pluripotent stem (iPS) cell procedure, provides potential routes toward non-immunogenic cell replacement therapies. Nucleolar proteins serve as markers for activation of embryonic genes, whose expression is crucial for successful reprogramming. Although Nucleolin (Ncl) is one of the most abundant nucleolar proteins, its interaction partners in ES cells have remained unidentified. METHODOLOGY: Here we explored novel Ncl-interacting proteins using in situ proximity ligation assay (PLA), colocalization and immunoprecipitation (IP) in ES cells. PRINCIPAL FINDINGS: We found that phosphorylated Ncl (Ncl-P) interacted with translationally controlled tumor protein (Tpt1) in murine ES cells. The Ncl-P/Tpt1 complex peaked during mitosis and was reduced upon retinoic acid induced differentiation, signifying a role in cell proliferation. In addition, we showed that Ncl-P interacted with the transcription factor Oct4 during interphase in human as well as murine ES cells, indicating of a role in transcription. The Ncl-P/Oct4 complex peaked during early stages of spontaneous human ES cell differentiation and may thus be involved in the initial differentiation event(s) of mammalian development. CONCLUSIONS: Here we described two novel protein-protein interactions in ES cells, which give us further insight into the complex network of interacting proteins in pluripotent cells
- …
