4,010 research outputs found

    Quantum field tomography

    Get PDF
    We introduce the concept of quantum field tomography, the efficient and reliable reconstruction of unknown quantum fields based on data of correlation functions. At the basis of the analysis is the concept of continuous matrix product states, a complete set of variational states grasping states in quantum field theory. We innovate a practical method, making use of and developing tools in estimation theory used in the context of compressed sensing such as Prony methods and matrix pencils, allowing us to faithfully reconstruct quantum field states based on low-order correlation functions. In the absence of a phase reference, we highlight how specific higher order correlation functions can still be predicted. We exemplify the functioning of the approach by reconstructing randomised continuous matrix product states from their correlation data and study the robustness of the reconstruction for different noise models. We also apply the method to data generated by simulations based on continuous matrix product states and using the time-dependent variational principle. The presented approach is expected to open up a new window into experimentally studying continuous quantum systems, such as encountered in experiments with ultra-cold atoms on top of atom chips. By virtue of the analogy with the input-output formalism in quantum optics, it also allows for studying open quantum systems.Comment: 31 pages, 5 figures, minor change

    Standard map in magnetized relativistic systems: fixed points and regular acceleration

    Get PDF
    We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.Comment: Work to appear in Phys. Rev. E. 2 figure

    Experimentally exploring compressed sensing quantum tomography

    Get PDF
    In the light of the progress in quantum technologies, the task of verifying the correct functioning of processes and obtaining accurate tomographic information about quantum states becomes increasingly important. Compressed sensing, a machinery derived from the theory of signal processing, has emerged as a feasible tool to perform robust and significantly more resource-economical quantum state tomography for intermediate-sized quantum systems. In this work, we provide a comprehensive analysis of compressed sensing tomography in the regime in which tomographically complete data is available with reliable statistics from experimental observations of a multi-mode photonic architecture. Due to the fact that the data is known with high statistical significance, we are in a position to systematically explore the quality of reconstruction depending on the number of employed measurement settings, randomly selected from the complete set of data, and on different model assumptions. We present and test a complete prescription to perform efficient compressed sensing and are able to reliably use notions of model selection and cross-validation to account for experimental imperfections and finite counting statistics. Thus, we establish compressed sensing as an effective tool for quantum state tomography, specifically suited for photonic systems.Comment: 12 pages, 5 figure

    Quantificação não destrutiva do contéudo de clorofilas em folhas de milho através de método colorimétrico.

    Get PDF
    Este trabalho foi conduzido visando avaliar a viabilidade da utilização de um colorímetro, como alternativa ao medidor de clorofila para a quantificação não destrutiva de clorofilas em folhas de milho.Suplemento. Trabalho apresentado no 52. Congresso Brasileiro de Olericultura, Salvador, 2012

    Universality of dispersive spin-resonance mode in superconducting BaFe2As2

    Full text link
    Spin fluctuations in superconducting BaFe2(As1-xPx)2 (x=0.34, Tc = 29.5 K) are studied using inelastic neutron scattering. Well-defined commensurate magnetic signals are observed at ({\pi},0), which is consistent with the nesting vector of the Fermi surface. Antiferromagnetic (AFM) spin fluctuations in the normal state exhibit a three-dimensional character reminiscent of the AFM order in nondoped BaFe2As2. A clear spin gap is observed in the superconducting phase forming a peak whose energy is significantly dispersed along the c-axis. The bandwidth of dispersion becomes larger with approaching the AFM ordered phase universally in all superconducting BaFe2As2, indicating that the dispersive feature is attributed to three-dimensional AFM correlations. The results suggest a strong relationship between the magnetism and superconductivity.Comment: 5 pages, 5 figure

    Inoculação de bactérias fixadoras de nitrogênio em arroz de sequeiro (Oryza sativa): respostas fisiológicas em estudos in vitro.

    Get PDF
    Este estudo determinou as respostas fisiológicas de 10 variedades de arroz de sequeiro (Oryza sativa L.) inoculação utilizando bactérias fixadoras de nitrogênio em ensaios in vitro

    Splitting of resonance excitations in nearly optimally doped Ba(Fe0.94Co0.06)2As2: an inelastic neutron scattering study with polarization analysis

    Full text link
    Magnetic excitations in Ba(Fe0.94Co0.06)2As2 are studied by polarized inelastic neutron scattering (INS) above and below the superconducting transition. In the superconducting state we find clear evidence for two resonance-like excitations. At a higher energy of about 8 meV there is an isotropic resonance mode with weak dispersion along the c-direction. In addition we find a lower excitation at 4 meV that appears only in the c-polarized channel and whose intensity strongly varies with the L-component of the scattering vector. These resonance excitations behave remarkably similar to the gap modes in the antiferromagnetic phase of the parent compound BaFe2As2
    corecore