9,004 research outputs found
NNLO Computational Techniques: the Cases H -> gamma gamma and H -> g g
A large set of techniques needed to compute decay rates at the two-loop level
are derived and systematized. The main emphasis of the paper is on the two
Standard Model decays H -> gamma gamma and H -> g g. The techniques, however,
have a much wider range of application: they give practical examples of general
rules for two-loop renormalization; they introduce simple recipes for handling
internal unstable particles in two-loop processes; they illustrate simple
procedures for the extraction of collinear logarithms from the amplitude. The
latter is particularly relevant to show cancellations, e.g. cancellation of
collinear divergencies. Furthermore, the paper deals with the proper treatment
of non-enhanced two-loop QCD and electroweak contributions to different
physical (pseudo-)observables, showing how they can be transformed in a way
that allows for a stable numerical integration. Numerical results for the
two-loop percentage corrections to H -> gamma gamma, g g are presented and
discussed. When applied to the process pp -> gg + X -> H + X, the results show
that the electroweak scaling factor for the cross section is between -4 % and +
6 % in the range 100 GeV < Mh < 500 GeV, without incongruent large effects
around the physical electroweak thresholds, thereby showing that only a
complete implementation of the computational scheme keeps two-loop corrections
under control.Comment: LaTeX, 70 pages, 8 eps figure
Two-Loop Virtual Corrections to Drell-Yan Production at order alpha_s alpha^3
The Drell-Yan mechanism for the production of lepton pairs is one of the most
basic processes for physics studies at hadron colliders. It is therefore
important to have accurate theoretical predictions. In this work we compute the
two-loop virtual mixed QCD x QED corrections to Drell-Yan production. We
evaluate the Feynman diagrams by decomposing the amplitudes into a set of known
master integrals and their coefficients, which allows us to derive an
analytical result. We also perform a detailed study of the ultraviolet and
infrared structure of the two-loop amplitude and the corresponding poles in
epsilon.Comment: 20 pages, 3 figure
Mrk 1014: An AGN Dominated ULIRG at X-rays
In this paper we report on an XMM-Newton observation of the ultraluminous
infrared QSO Mrk 1014. The X-ray observation reveals a power-law dominated
(photon index of about 2.2) spectrum with a slight excess in the soft energy
range. AGN and starburst emission models fit the soft excess emission equally
well, however, the most plausible explanation is an AGN component as the
starburst model parameter, temperature and luminosity, appear physically
unrealistic. The mean luminosity of Mrk 1014 is about 2 times 10^44 erg s^-1.
We have also observed excess emission at energies greater than 5 keV. This
feature could be attributed to a broadened and redshifted iron complex, but
deeper observations are required to constrain its origin. The light curve shows
small scale variability over the 11 ks observation. There is no evidence of
intrinsic absorption in Mrk 1014. The X-ray observations support the notion of
an AGN dominated central engine. We establish the need for a longer observation
to constrain more precisely the nature of the X-ray components.Comment: 5 pages incl. 3 figures, MNRAS in pres
Deep Learning and Music Adversaries
OA Monitor ExerciseOA Monitor ExerciseAn {\em adversary} is essentially an algorithm intent on making a classification system perform in some particular way given an input, e.g., increase the probability of a false negative. Recent work builds adversaries for deep learning systems applied to image object recognition, which exploits the parameters of the system to find the minimal perturbation of the input image such that the network misclassifies it with high confidence. We adapt this approach to construct and deploy an adversary of deep learning systems applied to music content analysis. In our case, however, the input to the systems is magnitude spectral frames, which requires special care in order to produce valid input audio signals from network-derived perturbations. For two different train-test partitionings of two benchmark datasets, and two different deep architectures, we find that this adversary is very effective in defeating the resulting systems. We find the convolutional networks are more robust, however, compared with systems based on a majority vote over individually classified audio frames. Furthermore, we integrate the adversary into the training of new deep systems, but do not find that this improves their resilience against the same adversary
Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC
We report on the results of a 40 d multi-wavelength monitoring of the
Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the
system was monitored in the X-rays using the Swift telescope and in the optical
with multiple instruments. When the X-ray luminosity exceeded erg/s
we triggered an XMM-Newton ToO observation. Timing analysis of the photon
events collected during the XMM-Newton observation reveals coherent X-ray
pulsations with a period of 38.551(3) s (1 {\sigma}), making it the 17
known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray
spectrum is fitted best with a model composed of an absorbed power law () plus a high-temperature black-body (kT 2 keV) component. By
analysing 12 yr of available OGLE optical data we derived a 30.776(5) d
optical period, confirming the previously reported X-ray period of the system
as its orbital period. During our X-ray monitoring the system showed limited
optical variability while its IR flux varied in phase with the X-ray
luminosity, which implies the presence of a disk-like component adding cooler
light to the spectral energy distribution of the system.Comment: 11 pages, 11 figures, Accepted for publication in MNRA
Analysis, Visualization, and Transformation of Audio Signals Using Dictionary-based Methods
date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +0000date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +000
Single charge sensing and transport in double quantum dots fabricated from commercially grown Si/SiGe heterostructures
We perform quantum Hall measurements on three types of commercially available
modulation doped Si/SiGe heterostructures to determine their suitability for
depletion gate defined quantum dot devices. By adjusting the growth parameters,
we are able to achieve electron gases with charge densities 1-3 X 10^{11}/cm^2
and mobilities in excess of 100,000 cm^2/Vs. Double quantum dot devices
fabricated on these heterostructures show clear evidence of single charge
transitions as measured in dc transport and charge sensing and exhibit electron
temperatures of 100 mK in the single quantum dot regime.Comment: Related papers at http://pettagroup.princeton.ed
Very extended cold gas, star formation and outflows in the halo of a bright QSO at z>6
Past observations of QSO host galaxies at z >6 have found cold gas and star
formation on compact scales of a few kiloparsecs. We present new high
sensitivity IRAM PdBI follow-up observations of the [CII] 158micron emission
line and FIR continuum in the host galaxy of SDSS J1148+5152, a luminous QSO at
redshift 6.4189. We find that a large fraction of the gas traced by [CII] is at
high velocities, up to ~1400 km/s relative to the systemic velocity, confirming
the presence of a major quasar-driven outflow indicated by previous
observations. The outflow has a complex morphology and reaches a maximum
projected radius of ~30 kpc. The extreme spatial extent of the outflow allows
us, for the first time in an external galaxy, to estimate mass-loss rate,
kinetic power and momentum rate of the outflow as a function of the projected
distance from the nucleus and the dynamical time-scale. These trends reveal
multiple outflow events during the past 100 Myr, although the bulk of the mass,
energy and momentum appear to have been released more recently, within the past
~20 Myr. Surprisingly, we discover that also the quiescent gas at systemic
velocity is extremely extended. More specifically, we find that, while 30% of
the [CII] within v\in(-200, 200) km/s traces a compact component that is not
resolved by our observations, 70% of the [CII] emission in this velocity range
is extended, with a projected FWHM size of 17.4+-1.4 kpc. We detect FIR
continuum emission associated with both the compact and the extended [CII]
components, although the extended FIR emission has a FWHM of 11+-3 kpc, thus
smaller than the extended [CII] source. Overall, our results indicate that the
cold gas traced by [CII] is distributed up to r~30 kpc. A large fraction of
extended [CII] is likely associated with star formation on large scales, but
the [CII] source extends well beyond the FIR continuum.Comment: Accepted for publication in A&A, 21 pages, 18 figures, 3 tables (v2:
accepted version, discussion expanded in Sect. 3, 4 and in the Appendices,
minor changes elsewhere
Matching factors for Delta S=1 four-quark operators in RI/SMOM schemes
The non-perturbative renormalization of four-quark operators plays a
significant role in lattice studies of flavor physics. For this purpose, we
define regularization-independent symmetric momentum-subtraction (RI/SMOM)
schemes for Delta S=1 flavor-changing four-quark operators and provide one-loop
matching factors to the MS-bar scheme in naive dimensional regularization. The
mixing of two-quark operators is discussed in terms of two different classes of
schemes. We provide a compact expression for the finite one-loop amplitudes
which allows for a straightforward definition of further RI/SMOM schemes.Comment: 22 pages, 5 figure
- …
