55,038 research outputs found

    Study of fast response thermocouple measurement of temperatures in cryogenic gases

    Get PDF
    Thermocouples fabricated from uninsulated small diameter wire have fast reproducible response times. The thermocouple is thermally isolated from its supports by making the leads of sufficient length so that the heat conduction down the leads is small and assuming that the leads adjacent to the junction are subjected to the same thermal conditions

    Some aspects of algorithm performance and modeling in transient analysis of structures

    Get PDF
    The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures)

    Near-Infrared Light Curves of the Black Hole Binary A0620-00

    Full text link
    We measured the near-infrared orbital light curve of the black hole binary A0620-00 in 1995 and 1996. The light curves show an asymmetric, double-humped modulation with extra emission in the peak at orbital phase 0.75. There were no significant changes in the shape of the light curve over the one-year observation period. There were no sharp dips in the light curves nor reversals of the asymmetry between the two peaks as seen in earlier observations. The light curves are well fit by models incorporating ellipsoidal variations from the mass-losing K-type star plus a beamed bright spot on the accretion disk around the compact star. The long-term stability of the light curve shape rules out superhumps and star spots as sources of asymmetry when we observed A0620-00. The ellipsoidal variations yield a lower limit i >= 38 deg on the orbital inclination. The light curves show no eclipse features, which places an upper limit i <= 75 deg. This range of inclinations constrains the mass of the compact object to 3.3 < M_1 < 13.6 Msun. The light curves do not further constrain the orbital inclination because the contribution of the accretion disk to the observed flux is unknown. We argue that a previous attempt to measure the near-infrared flux from the accretion disk using the dilution of the 12CO(2,0) bandhead in the spectrum of the K star is not reliable because the band strength depends strongly on surface gravity.Comment: Accepted for publication in the Astronomical Journal. 17 pages, 4 figures. Prepared using AASTEX V. 5.

    The Orbital Light Curve of Aquila X-1

    Get PDF
    We obtained R- and I-band CCD photometry of the soft X-ray transient/neutron- star binary Aql X-1 in 1998 June while it was at quiescence. We find that its light curve is dominated by ellipsoidal variations, although the ellipsoidal variations are severely distorted and have unequal maxima. After we correct for the contaminating flux from a field star located only 0.46" away, the peak-to-peak amplitude of the modulation is ~0.25 mag in the R band, which requires the orbital inclination to be greater than 36 degrees. The orbital period we measure is consistent with the 18.95 h period measured by Chevalier & Ilovaisky (1998). During its outbursts the light curve of Aql X-1 becomes single humped. The outburst light curve observed by Garcia et al. (1999) agrees in phase with our quiescent light curve. We show that the single humped variation is caused by a ``reflection effect,'' that is, by heating of the side of the secondary star facing towards the neutron star.Comment: 18 manuscript pages, 7 figures; accepted by A

    Peeling properties of lightlike signals in General Relativity

    Get PDF
    The peeling properties of a lightlike signal propagating through a general Bondi-Sachs vacuum spacetime and leaving behind another Bondi-Sachs vacuum space-time are studied. We demonstrate that in general the peeling behavior is the conventional one which is associated with a radiating isolated system and that it becomes unconventional if the asymptotically flat space-times on either side of the history of the light-like signal tend to flatness at future null infinity faster than the general Bondi-Sachs space-time. This latter situation occurs if, for example, the space-times in question are static Bondi-Sachs space- times.Comment: 14 pages, LaTeX2

    Emission lines and optical continuum in low-luminosity radio galaxies

    Full text link
    We present spectroscopic observations of a complete sub-sample of 13 low-luminosity radio galaxies selected from the 2Jy sample. The underlying continuum in these sources is carefully modelled in order to make a much-needed comparison between the emission line and continuum properties of FRIs with those of other classes of radio sources. We find that 5 galaxies in the sample show a measurable UV excess: 2 of the these sources are BL Lacs and in the remaining 3 galaxies we argue that the most likely contributor to the UV excess is a young stellar component. Excluding the BL Lacs, we therefore find that \~30% of the sample show evidence for young stars, which is similar to the results obtained for higher luminosity samples. We compare our results with far-infrared measurements in order to investigate the far-infrared-starburst link. The nature of the optical-radio correlations is investigated in light of this new available data and, in contrast to previous studies, we find that the FRI sources follow the correlations with a similar slope to that found for the FRIIs. Finally, we compare the luminosity of the emission lines in the FRI and BL Lac sources and find a significant difference in the [OIII] line luminosities of the two groups. Our results are discussed in the context of the unified schemes.Comment: 18 pages, 31 figures, MNRAS in press, (all enquiries to Clive Tadhunter ([email protected])

    Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR)

    Get PDF
    Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR

    Shearing Interferometer for Quantifying the Coherence of Hard X-Ray Beams

    Get PDF
    We report a quantitative measurement of the full transverse coherence function of the 14.4 keV x-ray radiation produced by an undulator at the Swiss Light Source. An x-ray grating interferometer consisting of a beam splitter phase grating and an analyzer amplitude grating has been used to measure the degree of coherence as a function of the beam separation out to 30 m. Importantly, the technique provides a model-free and spatially resolved measurement of the complex coherence function and is not restricted to high resolution detectors and small fields of view. The spatial characterization of the wave front has important applications in discovering localized defects in beam line optics

    Twisting Null Geodesic Congruences, Scri, H-Space and Spin-Angular Momentum

    Full text link
    The purpose of this work is to return, with a new observation and rather unconventional point of view, to the study of asymptotically flat solutions of Einstein equations. The essential observation is that from a given asymptotically flat space-time with a given Bondi shear, one can find (by integrating a partial differential equation) a class of asymptotically shear-free (but, in general, twistiing) null geodesic congruences. The class is uniquely given up to the arbitrary choice of a complex analytic world-line in a four-parameter complex space. Surprisingly this parameter space turns out to be the H-space that is associated with the real physical space-time under consideration. The main development in this work is the demonstration of how this complex world-line can be made both unique and also given a physical meaning. More specifically by forcing or requiring a certain term in the asymptotic Weyl tensor to vanish, the world-line is uniquely determined and becomes (by several arguments) identified as the `complex center-of-mass'. Roughly, its imaginary part becomes identified with the intrinsic spin-angular momentum while the real part yields the orbital angular momentum.Comment: 26 pages, authors were relisted alphabeticall
    corecore