55,038 research outputs found
Study of fast response thermocouple measurement of temperatures in cryogenic gases
Thermocouples fabricated from uninsulated small diameter wire have fast reproducible response times. The thermocouple is thermally isolated from its supports by making the leads of sufficient length so that the heat conduction down the leads is small and assuming that the leads adjacent to the junction are subjected to the same thermal conditions
Recommended from our members
An Evaluation of a Battery of Functional and Structural Tests as Predictors of Likely Risk of Progression of Age-Related Macular Degeneration.
Purpose: To evaluate the ability of visual function and structural tests to identify the likely risk of progression from early/intermediate to advanced AMD, using the Age-Related Eye Disease Study (AREDS) simplified scale as a surrogate for risk of progression. The secondary aim was to determine the relationship between disease severity grade and the observed functional and structural deficits. Methods: A total of 100 participants whose AMD status varied from early to advanced were recruited. Visual function was assessed using cone dark adaptation, 14 Hz flicker and chromatic threshold tests and retinal structure was assessed by measuring drusen volume and macular thickness. The predictive value of the tests was estimated using ordinal regression analysis. Group comparisons were assessed using analysis of covariance. Results: Change in cone dark adaptation (cone τ) and yellow-blue (YB) chromatic sensitivity were independent predictors for AMD progression risk (cone τ, pseudo R2 = 0.35, P < 0.001; YB chromatic threshold, pseudo R2 = 0.16, P < 0.001). The only structural predictor was foveal thickness (R2 = 0.05, P = 0.047). Chromatic sensitivity and cone dark adaptation were also the best functional tests at distinguishing between severity groups. Drusen characteristics clearly differentiated between participants with early and advanced disease, but were not able to differentiate between those with early AMD and controls. Mean differences in retinal thickness existed between severity groups at the foveal (P = 0.040) and inner (P = 0.001) subfields. Conclusions: This study indicates that cone τ, YB chromatic threshold and foveal thickness are independent predictors of likely risk of AMD progression
Some aspects of algorithm performance and modeling in transient analysis of structures
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures)
Near-Infrared Light Curves of the Black Hole Binary A0620-00
We measured the near-infrared orbital light curve of the black hole binary
A0620-00 in 1995 and 1996. The light curves show an asymmetric, double-humped
modulation with extra emission in the peak at orbital phase 0.75. There were no
significant changes in the shape of the light curve over the one-year
observation period. There were no sharp dips in the light curves nor reversals
of the asymmetry between the two peaks as seen in earlier observations. The
light curves are well fit by models incorporating ellipsoidal variations from
the mass-losing K-type star plus a beamed bright spot on the accretion disk
around the compact star. The long-term stability of the light curve shape rules
out superhumps and star spots as sources of asymmetry when we observed
A0620-00. The ellipsoidal variations yield a lower limit i >= 38 deg on the
orbital inclination. The light curves show no eclipse features, which places an
upper limit i <= 75 deg. This range of inclinations constrains the mass of the
compact object to 3.3 < M_1 < 13.6 Msun. The light curves do not further
constrain the orbital inclination because the contribution of the accretion
disk to the observed flux is unknown. We argue that a previous attempt to
measure the near-infrared flux from the accretion disk using the dilution of
the 12CO(2,0) bandhead in the spectrum of the K star is not reliable because
the band strength depends strongly on surface gravity.Comment: Accepted for publication in the Astronomical Journal. 17 pages, 4
figures. Prepared using AASTEX V. 5.
The Orbital Light Curve of Aquila X-1
We obtained R- and I-band CCD photometry of the soft X-ray transient/neutron-
star binary Aql X-1 in 1998 June while it was at quiescence. We find that its
light curve is dominated by ellipsoidal variations, although the ellipsoidal
variations are severely distorted and have unequal maxima. After we correct for
the contaminating flux from a field star located only 0.46" away, the
peak-to-peak amplitude of the modulation is ~0.25 mag in the R band, which
requires the orbital inclination to be greater than 36 degrees. The orbital
period we measure is consistent with the 18.95 h period measured by Chevalier &
Ilovaisky (1998). During its outbursts the light curve of Aql X-1 becomes
single humped. The outburst light curve observed by Garcia et al. (1999) agrees
in phase with our quiescent light curve. We show that the single humped
variation is caused by a ``reflection effect,'' that is, by heating of the side
of the secondary star facing towards the neutron star.Comment: 18 manuscript pages, 7 figures; accepted by A
Peeling properties of lightlike signals in General Relativity
The peeling properties of a lightlike signal propagating through a general
Bondi-Sachs vacuum spacetime and leaving behind another Bondi-Sachs vacuum
space-time are studied. We demonstrate that in general the peeling behavior is
the conventional one which is associated with a radiating isolated system and
that it becomes unconventional if the asymptotically flat space-times on either
side of the history of the light-like signal tend to flatness at future null
infinity faster than the general Bondi-Sachs space-time. This latter situation
occurs if, for example, the space-times in question are static Bondi-Sachs
space- times.Comment: 14 pages, LaTeX2
Emission lines and optical continuum in low-luminosity radio galaxies
We present spectroscopic observations of a complete sub-sample of 13
low-luminosity radio galaxies selected from the 2Jy sample. The underlying
continuum in these sources is carefully modelled in order to make a much-needed
comparison between the emission line and continuum properties of FRIs with
those of other classes of radio sources. We find that 5 galaxies in the sample
show a measurable UV excess: 2 of the these sources are BL Lacs and in the
remaining 3 galaxies we argue that the most likely contributor to the UV excess
is a young stellar component. Excluding the BL Lacs, we therefore find that
\~30% of the sample show evidence for young stars, which is similar to the
results obtained for higher luminosity samples. We compare our results with
far-infrared measurements in order to investigate the far-infrared-starburst
link. The nature of the optical-radio correlations is investigated in light of
this new available data and, in contrast to previous studies, we find that the
FRI sources follow the correlations with a similar slope to that found for the
FRIIs. Finally, we compare the luminosity of the emission lines in the FRI and
BL Lac sources and find a significant difference in the [OIII] line
luminosities of the two groups. Our results are discussed in the context of the
unified schemes.Comment: 18 pages, 31 figures, MNRAS in press, (all enquiries to Clive
Tadhunter ([email protected])
Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR)
Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR
Shearing Interferometer for Quantifying the Coherence of Hard X-Ray Beams
We report a quantitative measurement of the full transverse coherence function of the 14.4 keV x-ray radiation produced by an undulator at the Swiss Light Source. An x-ray grating interferometer consisting of a beam splitter phase grating and an analyzer amplitude grating has been used to measure the degree of coherence as a function of the beam separation out to 30 m. Importantly, the technique provides a model-free and spatially resolved measurement of the complex coherence function and is not restricted to high resolution detectors and small fields of view. The spatial characterization of the wave front has important applications in discovering localized defects in beam line optics
Twisting Null Geodesic Congruences, Scri, H-Space and Spin-Angular Momentum
The purpose of this work is to return, with a new observation and rather
unconventional point of view, to the study of asymptotically flat solutions of
Einstein equations. The essential observation is that from a given
asymptotically flat space-time with a given Bondi shear, one can find (by
integrating a partial differential equation) a class of asymptotically
shear-free (but, in general, twistiing) null geodesic congruences. The class is
uniquely given up to the arbitrary choice of a complex analytic world-line in a
four-parameter complex space. Surprisingly this parameter space turns out to be
the H-space that is associated with the real physical space-time under
consideration. The main development in this work is the demonstration of how
this complex world-line can be made both unique and also given a physical
meaning. More specifically by forcing or requiring a certain term in the
asymptotic Weyl tensor to vanish, the world-line is uniquely determined and
becomes (by several arguments) identified as the `complex center-of-mass'.
Roughly, its imaginary part becomes identified with the intrinsic spin-angular
momentum while the real part yields the orbital angular momentum.Comment: 26 pages, authors were relisted alphabeticall
- …
