166 research outputs found

    Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease.

    Get PDF
    OBJECTIVES: Visuospatial processing deficits have been reported in Huntington's disease (HD). To date, no study has examined associations between visuospatial cognition and posterior brain findings in HD. METHODS: We compared 119 premanifest (55> and 64<10.8 years to expected disease onset) and 104 early symptomatic (59 stage-1 and 45 stage-2) gene carriers, with 110 controls on visual search and mental rotation performance at baseline and 12 months. In the disease groups, we also examined associations between task performance and disease severity, functional capacity and structural brain measures. RESULTS: Cross-sectionally, there were strong differences between all disease groups and controls on visual search, and between diagnosed groups and controls on mental rotation accuracy. Only the premanifest participants close to onset took longer than controls to respond correctly to mental rotation. Visual search negatively correlated with disease burden and motor symptoms in diagnosed individuals, and positively correlated with functional capacity. Mental rotation ("same") was negatively correlated with motor symptoms in stage-2 individuals, and positively correlated with functional capacity. Visual search and mental rotation were associated with parieto-occipital (pre-/cuneus, calcarine, lingual) and temporal (posterior fusiform) volume and cortical thickness. Longitudinally, visual search deteriorated over 12 months in stage-2 individuals, with no evidence of declines in mental rotation. CONCLUSIONS: Our findings provide evidence linking early visuospatial deficits to functioning and posterior cortical dysfunction in HD. The findings are important since large research efforts have focused on fronto-striatal mediated cognitive changes, with little attention given to aspects of cognition outside of these areas. (JINS, 2016, 22, 595-608)

    COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551

    CONSORT 2010 statement: extension to randomised pilot and feasibility trials [on behalf of the PAFS consensus group*]

    Get PDF
    The Consolidated Standards of Reporting Trials (CONSORT) statement is a guideline designed to improve the transparency and quality of the reporting of randomised controlled trials (RCTs). In this article we present an extension to that statement for randomised pilot and feasibility trials conducted in advance of a future definitive RCT. The checklist applies to any randomised study in which a future definitive RCT, or part of it, is conducted on a smaller scale, regardless of its design (eg, cluster, factorial, crossover) or the terms used by authors to describe the study (eg, pilot, feasibility, trial, study). The extension does not directly apply to internal pilot studies built into the design of a main trial, non-randomised pilot and feasibility studies, or phase II studies, but these studies all have some similarities to randomised pilot and feasibility studies and so many of the principles might also apply. The development of the extension was motivated by the growing number of studies described as feasibility or pilot studies and by research that has identified weaknesses in their reporting and conduct. We followed recommended good practice to develop the extension, including carrying out a Delphi survey, holding a consensus meeting and research team meetings, and piloting the checklist. The aims and objectives of pilot and feasibility randomised studies differ from those of other randomised trials. Consequently, although much of the information to be reported in these trials is similar to those in randomised controlled trials (RCTs) assessing effectiveness and efficacy, there are some key differences in the type of information and in the appropriate interpretation of standard CONSORT reporting items. We have retained some of the original CONSORT statement items, but most have been adapted, some removed, and new items added. The new items cover how participants were identified and consent obtained; if applicable, the prespecified criteria used to judge whether or how to proceed with a future definitive RCT; if relevant, other important unintended consequences; implications for progression from pilot to future definitive RCT, including any proposed amendments; and ethical approval or approval by a research review committee confirmed with a reference number. This article includes the 26 item checklist, a separate checklist for the abstract, a template for a CONSORT flowchart for these studies, and an explanation of the changes made and supporting examples. We believe that routine use of this proposed extension to the CONSORT statement will result in improvements in the reporting of pilot trials. Editor’s note: In order to encourage its wide dissemination this article is freely accessible on the BMJ and Pilot and Feasibility Studies journal websites

    Robust markers and sample sizes for multi‐centre trials of Huntington's disease

    Get PDF
    Objective: The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD). We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of imaging markers robust to multicenter variation and to derive upper estimates on sample sizes for clinical trials in HD. Methods: We used 1 postprocessing pipeline to retrospectively analyze T1-weighted magnetic resonance imaging (MRI) scans from 624 participants at 3 time points, from the PREDICT-HD, TRACK-HD, and IMAGE-HD studies. We used mixed effects models to adjust regional brain volumes for covariates, calculate effect sizes, and simulate possible treatment effects in disease-affected anatomical regions. We used our model to estimate the statistical power of possible treatment effects for anatomical regions and clinical markers. Results: We identified a set of common anatomical regions that have similarly large standardized effect sizes (>0.5) between healthy control and premanifest HD (PreHD) groups. These included subcortical, white matter, and cortical regions and nonventricular cerebrospinal fluid (CSF). We also observed a consistent spatial distribution of effect size by region across the whole brain. We found that multicenter studies were necessary to capture treatment effect variance; for a 20% treatment effect, power of >80% was achieved for the caudate (n = 661), pallidum (n = 687), and nonventricular CSF (n = 939), and, crucially, these imaging markers provided greater power than standard clinical markers. Interpretation: Our findings provide the first cross-study validation of structural imaging markers in HD, supporting the use of these measurements as endpoints for both observational studies and clinical trial

    Fast Track Communication

    Get PDF
    Abstract Photoionization of Mg 3s is studied near the Cooper minimum in dipole channels using the relativistic-random-phase approximation. While the importance of first-order nondipole effects on photoelectron angular distributions at low energies is well known, it is reported here for the first time that in the energy region near the dipole Cooper minimum, quadrupole transitions are not just important, but actually dominate the total photoionization cross section. Studies of dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interference terms in the photoelectron angular distribution show that in the region of dipole Cooper minimum even the calculation of the dipole angular distribution parameter, β, requires the inclusion of quadrupole channels. The significance of second-order [O(k 2 r 2 )] nondipole terms, primarily due to the contributions from electric quadrupole-quadrupole interference terms at photon energy as low as ∼11 eV, are shown to induce dramatic changes in the photoelectron angular distribution over a small energy range

    Clustering patients on the basis of their individual course of low back pain over a six month period

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several researchers have searched for subgroups in the heterogeneous population of patients with non-specific low back pain (LBP). To date, subgroups have been identified based on psychological profiles and the variation of pain.</p> <p>Methods</p> <p>This multicentre prospective observational study explored the 6- month clinical course with measurements of bothersomeness that were collected from weekly text messages that were sent by 176 patients with LBP. A hierarchical cluster analysis, Ward's method, was used to cluster patients according to the development of their pain.</p> <p>Results</p> <p>Four clusters with distinctly different clinical courses were described and further validated against clinical baseline variables and outcomes. Cluster 1, a "stable" cluster, where the course was relatively unchanged over time, contained young patients with good self- rated health. Cluster 2, a group of "fast improvers" who were very bothered initially but rapidly improved, consisted of patients who rated their health as relatively poor but experienced the fewest number of days with bothersome pain of all the clusters. Cluster 3 was the "typical patient" group, with medium bothersomeness at baseline and an average improvement over the first 4-5 weeks. Finally, cluster 4 contained the "slow improvers", a group of patients who improved over 12 weeks. This group contained older individuals who had more LBP the previous year and who also experienced most days with bothersome pain of all the clusters.</p> <p>Conclusions</p> <p>It is possible to define clinically meaningful clusters of patients based on their individual course of LBP over time. Future research should aim to reproduce these clusters in different populations, add further clinical variables to distinguish the clusters and test different treatment strategies for them.</p

    Design optimization for clinical trials in early-stage manifest Huntington's disease.

    Get PDF
    The purpose of this study was to inform the design of randomized clinical trials in early-stage manifest Huntington's disease through analysis of longitudinal data from TRACK-Huntington's Disease (TRACK-HD), a multicenter observational study. We compute sample sizes required for trials with candidate clinical, functional, and imaging outcomes, whose aims are to reduce rates of change. The calculations use a 2-stage approach: first using linear mixed models to estimate mean rates of change and components of variability from TRACK-HD data and second using these to predict sample sizes for a range of trial designs. For each outcome, the primary drivers of the required sample size were the anticipated treatment effect and the duration of treatment. Extending durations from 1 to 2 years yielded large sample size reductions. Including interim visits and incorporating stratified randomization on predictors of outcome together with covariate adjustment gave more modest, but nontrivial, benefits. Caudate atrophy, expressed as a percentage of its baseline, was the outcome that gave smallest required sample sizes. Here we consider potential required sample sizes for clinical trials estimated from naturalistic observation of longitudinal change. Choice among outcome measures for a trial must additionally consider their relevance to patients and the expected effect of the treatment under study. For all outcomes considered, our results provide compelling arguments for 2-year trials, and we also demonstrate the benefits of incorporating stratified randomization coupled with covariate adjustment, particularly for trials with caudate atrophy as the primary outcome. The benefits of enrichment are more debatable, with statistical benefits offset by potential recruitment difficulties and reduced generalizability. © 2017 International Parkinson and Movement Disorder Society

    The use of schools for malaria surveillance and programme evaluation in Africa.

    Get PDF
    Effective malaria control requires information on both the geographical distribution of malaria risk and the effectiveness of malaria interventions. The current standard for estimating malaria infection and impact indicators are household cluster surveys, but their complexity and expense preclude frequent and decentralized monitoring. This paper reviews the historical experience and current rationale for the use of schools and school children as a complementary, inexpensive framework for planning, monitoring and evaluating malaria control in Africa. Consideration is given to (i) the selection of schools; (ii) diagnosis of infection in schools; (iii) the representativeness of schools as a proxy of the communities they serve; and (iv) the increasing need to evaluate interventions delivered through schools. Finally, areas requiring further investigation are highlighted
    corecore