2,869 research outputs found
Galaxy Formation by Galactic Magnetic Fields
Galaxies exhibit a sequence of various morphological types, i.e., the Hubble
sequence, and they are basically composed of spheroidal components (elliptical
galaxies and bulges in spiral galaxies) and disks. It is known that spheroidal
components are found only in relatively massive galaxies with M=10^{10-12}
M_sun, and all stellar populations in them are very old, but there is no clear
explanation for these facts. Here we present a speculative scenario for the
origin of the Hubble sequence, in which magnetic fields ubiquitously seen in
galaxies have played a crucial role. We first start from a strange
observational fact that magnetic field strengths observed in spiral galaxies
sharply concentrate at a few microgauss, for a wide range of galaxy luminosity
and types. We then argue that this fact and the observed correlation between
star formation activity and magnetic field strength in spiral galaxies suggest
that spheroidal galaxies have formed by starbursts induced by strong magnetic
fields. Then we show that this idea naturally leads to the formation of
spheroidal systems only in massive and high-redshift objects in hierarchically
clustering universe, giving a simple explanation for various observations.Comment: 7 pages including 2 figures. Accepted by ApJ Letter
Establishing the entatic state in folding metallated Pseudomonas aeruginosa azurin
Understanding how the folding of proteins establishes their functional characteristics at the molecular level challenges both theorists and experimentalists. The simplest test beds for confronting this issue are provided by electron transfer proteins. The environment provided by the folded protein to the cofactor tunes the metal's electron transport capabilities as envisioned in the entatic hypothesis. To see how the entatic state is achieved one must study how the folding landscape affects and in turn is affected by the metal. Here, we develop a coarse-grained functional to explicitly model how the coordination of the metal (which results in a so-called entatic or rack-induced state) modifies the folding of the metallated Pseudomonas aeruginosa azurin. Our free-energy functional-based approach directly yields the proper nonlinear extra-thermodynamic free energy relationships for the kinetics of folding the wild type and several point-mutated variants of the metallated protein. The results agree quite well with corresponding laboratory experiments. Moreover, our modified free-energy functional provides a sufficient level of detail to explicitly model how the geometric entatic state of the metal modifies the dynamic folding nucleus of azurin
Coherent acoustic vibration of metal nanoshells
Using time-resolved pump-probe spectroscopy we have performed the first
investigation of the vibrational modes of gold nanoshells. The fundamental
isotropic mode launched by a femtosecond pump pulse manifests itself in a
pronounced time-domain modulation of the differential transmission probed at
the frequency of nanoshell surface plasmon resonance. The modulation amplitude
is significantly stronger and the period is longer than in a gold nanoparticle
of the same overall size, in agreement with theoretical calculations. This
distinct acoustical signature of nanoshells provides a new and efficient method
for identifying these versatile nanostructures and for studying their
mechanical and structural properties.Comment: 5 pages, 3 figure
Large-scale magnetic fields in cosmology
Despite the widespread presence of magnetic fields, their origin, evolution
and role are still not well understood. Primordial magnetism sounds appealing
but is not problem free. The magnetic implications for the large-scale
structure of the universe still remain an open issue. This paper outlines the
advantages and shortcomings of early-time magnetogenesis and the typical role
of B-fields in linear structure-formation scenarios.Comment: Invited Talk (36th EPS Conference on Plasma Physics, 2009
The energy spectrum observed by the AGASA experiment and the spatial distribution of the sources of ultra-high energy cosmic rays
Seven and a half years of continuous monitoring of giant air showers
triggered by ultra high-energy cosmic rays have been recently summarized by the
AGASA collaboration. The resulting energy spectrum indicates clearly that the
cosmic ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK)
cut-off at eV. Furthermore, despite the small number
statistics involved, some structure in the spectrum may be emerging. Using
numerical simulations, it is demonstrated in the present work that these
features are consistent with a spatial distribution of sources that follows the
distribution of luminous matter in the local Universe. Therefore, from this
point of view, there is no need for a second high-energy component of cosmic
rays dominating the spectrum beyond the GZK cut-off.Comment: 14 pages, 4 figures, Astrophys. J. Letters (submitted
The critical velocity effect as a cause for the H\alpha emission from the Magellanic stream
Observations show significant H\alpha-emissions in the Galactic halo near the
edges of cold gas clouds of the Magellanic Stream. The source for the
ionization of the cold gas is still a widely open question. In our paper we
discuss the critical velocity effect as a possible explanation for the observed
H\alpha-emission. The critical velocity effect can yield a fast ionization of
cold gas if this neutral gas passes through a magnetized plasma under suitable
conditions. We show that for parameters that are typical for the Magellanic
Stream the critical velocity effect has to be considered as a possible
ionization source of high relevance.Comment: 9 pages, 2 figures. accepted, to appear in The Astrophysical Journa
Acid-Labile Traceless Click Linker for Protein Transduction
Intracellular delivery of active proteins presents an interesting approach in research and therapy. We created a protein transduction shuttle based on a new traceless click linker that combines the advantages of click reactions with implementation of reversible pH-sensitive bonds. The azidomethyl-methylmaleic anhydride (AzMMMan) linker was found compatible with different click chemistries, demonstrated in bioreversible protein modification with dyes, polyethylene glycol, or a transduction carrier. Linkages were stable at physiological pH but reversible at the mild acidic pH of endosomes or lysosomes. We show that pH-reversible attachment of a defined endosome-destabilizing three-arm oligo(ethane amino)amide carrier generates an effective shuttle for protein delivery. The cargo protein nlsEGFP, when coupled via the traceless AzMMMan linker, experiences efficient cellular uptake and endosomal escape into the cytosol, followed by import into the nucleus. In contrast, irreversible linkage to the same shuttle hampers nuclear delivery of nlsEGFP which after uptake remains trapped in the cytosol. Successful intracellular delivery of bioactive ß-galactosidase as a model enzyme was also demonstrated using the pH-controlled shuttle system
Coarctation of the aorta: pre and postoperative evaluation with MRI and MR angiography; correlation with echocardiography and surgery
Aims: To compare MRI and MRA with Doppler-echocardiography (DE) in native and postoperative aortic coarctation, define the best MR protocol for its evaluation, compare MR with surgical findings in native coarctation. Materials and methods: 136 MR studies were performed in 121 patients divided in two groups: Group I, 55 preoperative; group II, 81 postoperative. In group I, all had DE and surgery was performed in 35 cases. In group II, DE was available for comparison in 71 cases. MR study comprised: spin-echo, cine, velocity-encoded cine (VEC) sequences and 3D contrast-enhanced MRA. Results: In group I, diagnosis of coarctation was made by DE in 33 cases and suspicion of coarctation and/or aortic arch hypoplasia in 18 cases. Aortic arch was not well demonstrated in 3 cases and DE missed one case. There was a close correlation between VEC MRI and Doppler gradient estimates across the coarctation, between MRI aortic arch diameters and surgery but a poor correlation in isthmic measurements. In group II, DE detected a normal isthmic region in 31 out of 35 cases. Postoperative anomalies (recoarctation, aortic arch hypoplasia, kinking, pseudoaneurysm) were not demonstrated with DE in 50% of cases. Conclusions: MRI is superior to DE for pre and post-treatment evaluation of aortic coarctation. An optimal MR protocol is proposed. Internal measurement of the narrowing does not correspond to the external aspect of the surgical narrowin
- …
