404 research outputs found
Quasiparticle Inelastic Lifetime from Paramagnons in Disordered Superconductors
The paramagnon contribution to the quasiparticle inelastic scattering rate in
disordered superconductors is presented. Using Anderson's exact eigenstate
formalism, it is shown that the scattering rate is Stoner enhanced and is
further enhanced by the disorder relative to the clean case in a manner similar
to the disorder enhancement of the long-range Coulomb contribution. The results
are discussed in connection with the possibility of conventional or
unconventional superconductivity in the borocarbides. The results are compared
to recent tunneling experiments on LuNiBC.Comment: 5 pages, no figure
Magnetic pair breaking in disordered superconducting films
A theory for the effects of nonmagnetic disorder on the magnetic pair
breaking rate induced by paramagnetic impurities in quasi
two-dimensional superconductors is presented. Within the framework of a
strong-coupling theory for disordered superconductors, we find that the
disorder dependence of is determined by the disorder enhancements of
both the electron-phonon coupling and the spin-flip scattering rate. These two
effects have a tendency to cancel each other. With parameter values appropriate
for Pb_{0.9} Bi_{0.1}, we find a pair breaking rate that is very weakly
dependent on disorder for sheet resistances 0 < R < 2.5 kOhm, in agreement with
a recent experiment by Chervenak and Valles.Comment: 6 pp., REVTeX, epsf, 2 eps figs, final version as publishe
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
Testing the predictability and efficiency of securitized real estate markets
This paper conducts tests of the random walk hypothesis and market efficiency for 14 national public real estate markets. Random walk properties of equity prices influence the return dynamics and determine the trading strategies of investors. To examine the stochastic properties of local real estate index returns and to test the hypothesis that public real estate stock prices follow a random walk, the single variance ratio tests of Lo and MacKinlay (1988) as well as the multiple variance ratio test of Chow and Denning (1993) are employed. Weak-form market efficiency is tested directly using non-parametric runs tests. Empirical evidence shows that weekly stock prices in major securitized real estate markets do not follow a random walk. The empirical findings of return predictability suggest that investors might be able to develop trading strategies allowing them to earn excess returns compared to a buy-and-hold strategy
Shaping gold nanocomposites with tunable optical properties
We report the synthesis of morphological uniform composites using miniemulsions of poly(tert-butyl acrylate) or
poly(styrene) containing organically capped gold nanocrystals (NCs). The optical features of such hybrid structures are
dominated by plasmonic effects and depend critically on the morphology of the resulting nanocomposite. In particular,
we demonstrate the ability to tune the overall optical response in the visible spectral region by varying the Au NCs
arrangement within the polymer matrix, and therefore the interparticle plasmon coupling, using Au NCs resulting from
the same batch of synthesis. This is a consequence of two well-known effects on the optical properties of Au particles: the
variation of the surrounding dielectric refractive index and interparticle plasmonic coupling. The research reported here
shows a general strategy to produce optical responsive nanocomposites via control of the morphology of submicrometric
polymer particles containing metal nanocrystals and thus is an alternative to the more common strategy of size
tuning metal nanoparticles used as nanofillers
Facile formation of highly mobile supported lipid bilayers on surface-quaternized pH-responsive polymer brushes
Poly(2-dimethylamino)ethyl methacrylate) (PDMA) brushes are grown from planar substrates via surface atom transfer radical polymerization (ATRP). Quaternization of these brushes is conducted using 1-iodooctadecane in n-hexane, which is a non-solvent for PDMA. Ellipsometry, AFM, and water contact angle measurements show that surface-confined quaternization occurs under these conditions, producing pH-responsive brushes that have a hydrophobic upper surface. Systematic variation of the 1-iodooctadecane concentration and reaction time enables the mean degree of surface quaternization to be optimized. Relatively low degrees of surface quaternization (ca. 10 mol % as judged by XPS) produce brushes that enable the formation of supported lipid bilayers, with the hydrophobic pendent octadecyl groups promoting in situ rupture of lipid vesicles. Control experiments confirm that quaternized PDMA brushes prepared in a good brush solvent (THF) produce non-pH-responsive brushes, presumably because the pendent octadecyl groups form micelle-like physical cross-links throughout the brush layer. Supported lipid bilayers (SLBs) can also be formed on the non-quaternized PDMA precursor brushes, but such structures proved to be unstable to small changes in pH. Thus, surface quaternization of PDMA brushes using 1-iodooctadecane in n-hexane provides the best protocol for the formation of robust SLBs. Fluorescence recovery after photobleaching (FRAP) studies of such SLBs indicate diffusion coefficients (2.8 ± 0.3 μm s–1) and mobile fractions (98 ± 2%) that are comparable to the literature data reported for SLBs prepared directly on planar glass substrates
Exosomal miR-6126 as a novel therapeutic target for overcoming resistance of anti-cancer effect in hepatocellular carcinoma
Background: Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer globally, presenting a substantial health challenge, particularly due to late-stage diagnoses that limit treatment effectiveness. Sorafenib, a multi-kinase inhibitor, is the primary chemotherapeutic agent for advanced HCC, but it only extends survival by 2-3 months. However, drug resistance remains a major clinical challenge, necessitating the exploration of new molecular mechanisms, including the role of microRNAs (miRNAs) in sorafenib resistance. In this study, we aimed to identify miRNAs within exosomes derived from sorafenib-resistant HCC cells to elucidate the molecular mechanisms underlying resistance. Methods: Sorafenib-resistant cells were generated by culturing the human HCC cell line Huh7 in a medium containing 20 μM sorafenib for six months. Exosomes were isolated from the conditioned medium 24 h before cell harvest using exosome-depleted serum medium. miRNA sequencing and western blotting were used to analyze the expression profiles of exosomal miRNAs and proteins, respectively. pH measurement was performed to assess pH changes in response to sorafenib treatment and miRNA modulation. Results: A total of 180 exosomal miRNAs were found to be dysregulated between sorafenib-treated control Huh7 (Huh7S) and sorafenib-resistant Huh7 (Huh7RS) cells, as well as between untreated control Huh7 and Huh7RS cells. Among these, miR-6126 was significantly downregulated in Huh7RS cells compared to Huh7S cells. Functional studies using 2-dimensional (D) and 3D cell culture systems revealed that miR-6126 overexpression reduced sorafenib resistance in Huh7RS cells, while its inhibition increased resistance in Huh7 cells. miR-6126 downregulated key proteins involved in cancer stem cell maintenance, such as CD44 and HK2. Furthermore, the pH level was elevated in cells overexpressing miR-6126 following sorafenib treatment, whereas inhibiting miR-6126 resulted in a lower pH. Conclusions: Exosomal miR-6126 plays a pivotal role in sorafenib resistance and tumorigenesis, highlighting its potential as a novel therapeutic target for overcoming drug resistance in HCC
Effect of Thermal Phase Fluctuations on the Inductances of Josephson Junctions, Arrays of Junctions, and Superconducting Films
We calculate the factor by which thermal phase fluctuations, as distinct from
phase-slip fluctuations, increase the inductance, LJ, of a resistively-shunted
Josephson junction (JJ) above its mean-field value, L0. We find that quantum
mechanics suppresses fluctuations when T drops below a temperature, TQ =
h/kBGL0, where G is the shunt conductance. Examination of the calculated sheet
inductance, LA(T)/L0(T), of arrays of JJ's reveals that 2-D interconnections
halve fluctuation effects, while reducing phase-slip effects by a much larger
factor. Guided by these results, we calculate the sheet inductance,
LF(T)/L0(T), of 2-D films by treating each plasma oscillation mode as an
overdamped JJ. In disordered s-wave superconductors, quantum suppression is
important for LF(0)/LF(T) > 0.14, (or, T/TC0 < 0.94). In optimally doped YBCO
and BSCCO quantum suppression is important for l2(0)/l2(T) > 0.25, where l is
the penetration depth.Comment: 15 pages; 4 figures. Submitted to Physical Review B, May 199
An assessment of technology-based service encounters & network security on the e-health care systems of medical centers in Taiwan
<p>Abstract</p> <p>Background</p> <p>Enhancing service efficiency and quality has always been one of the most important factors to heighten competitiveness in the health care service industry. Thus, how to utilize information technology to reduce work load for staff and expeditiously improve work efficiency and healthcare service quality is presently the top priority for every healthcare institution. In this fast changing modern society, e-health care systems are currently the best possible way to achieve enhanced service efficiency and quality under the restraint of healthcare cost control. The electronic medical record system and the online appointment system are the core features in employing e-health care systems in the technology-based service encounters.</p> <p>Methods</p> <p>This study implemented the Service Encounters Evaluation Model, the European Customer Satisfaction Index, the Attribute Model and the Overall Affect Model for model inference. A total of 700 copies of questionnaires from two authoritative southern Taiwan medical centers providing the electronic medical record system and the online appointment system service were distributed, among which 590 valid copies were retrieved with a response rate of 84.3%. We then used SPSS 11.0 and the Linear Structural Relationship Model (LISREL 8.54) to analyze and evaluate the data.</p> <p>Results</p> <p>The findings are as follows: (1) Technology-based service encounters have a positive impact on service quality, but not patient satisfaction; (2) After experiencing technology-based service encounters, the cognition of the service quality has a positive effect on patient satisfaction; and (3) Network security contributes a positive moderating effect on service quality and patient satisfaction.</p> <p>Conclusion</p> <p>It revealed that the impact of electronic workflow (online appointment system service) on service quality was greater than electronic facilities (electronic medical record systems) in technology-based service encounters. Convenience and credibility are the most important factors of service quality in technology-based service encounters that patients demand. Due to the openness of networks, patients worry that transaction information could be intercepted; also, the credibility of the hospital involved is even a bigger concern, as patients have a strong sense of distrust. Therefore, in the operation of technology-based service encounters, along with providing network security, it is essential to build an atmosphere of psychological trust.</p
CSF total tau/α-synuclein ratio improved the diagnostic performance for Alzheimers disease as an indicator of tau phosphorylation
Abstract
Background
Recently, several studies suggested potential involvements of α-synuclein in Alzheimers disease (AD) pathophysiology. Higher concentrations of α-synuclein were reported in cerebrospinal fluid (CSF) of AD patients with a positive correlation towards CSF tau, indicating its possible role in AD. We analyzed the CSF biomarkers to verify whether α-synuclein could be an additional supported biomarker in AD diagnosis.
Methods
In this cross-sectional study, CSF samples of 71 early-onset AD, 34 late-onset AD, 11 mild cognitive impairment, 17 subjective cognitive decline, 45 Parkinsons disease, and 32 healthy control (HC) were collected. CSF amyloid-β1-42 (A), total tau (N), and phosphorylated tau181 (T) were measured by commercial ELISA kits, and in-house ELISA kit was developed to quantify α-synuclein. The cognitive assessments and amyloid-PET imaging were also performed.
Results
CSF α-synuclein manifested a tendency to increase in AD and to decreased in Parkinsons disease compared to HC. The equilibrium states of total tau and α-synuclein concentrations were changed significantly in AD, and the ratio of total tau/α-synuclein (N/αS) was dramatically increased in AD than HC. Remarkably, N/αS revealed a strong positive correlation with tau phosphorylation rate. Also, the combination of N/αS with amyloid-β1-42/phosphorylated tau181ratio had the best diagnosis performance (AUC = 0.956, sensitivity = 96%, specificity = 87%). In concordance analysis, N/αS showed the higher diagnostic agreement with amyloid-β1-42 and amyloid-PET. Analysis of biomarker profiling with N/αS had distinctive characteristics and clustering of each group. Especially, among the group of suspected non-Alzheimers disease pathophysiology, all A−T+N+ patients with N/αS+ were reintegrated into AD.
Conclusions
The high correlation of α-synuclein with tau and the elevated N/αS in AD supported the involvement of α-synuclein in AD pathophysiology. Importantly, N/αS improved the diagnostic performance, confirming the needs of incorporating α-synuclein as a biomarker for neurodegenerative disorders. The incorporation of a biomarker group [N/αS] could contribute to provide better understanding and diagnosis of neurodegenerative disorders
- …
