738 research outputs found
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs
We show examples of excitation of coronal waves by flare-related abrupt
eruptions of magnetic rope structures. The waves presumably rapidly steepened
into shocks and freely propagated afterwards like decelerating blast waves that
showed up as Moreton waves and EUV waves. We propose a simple quantitative
description for such shock waves to reconcile their observed propagation with
drift rates of metric type II bursts and kinematics of leading edges of coronal
mass ejections (CMEs). Taking account of different plasma density falloffs for
propagation of a wave up and along the solar surface, we demonstrate a close
correspondence between drift rates of type II bursts and speeds of EUV waves,
Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white
light a large-scale dome-shaped expanding coronal transient with perfectly
connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57)
concluded that the dome was formed by a weak shock wave. We have revealed two
EUV components, one of which corresponded to this transient. All of its
properties found from EUV, white light, and a metric type II burst match
expectations for a freely expanding coronal shock wave including correspondence
to the fast-mode speed distribution, while the transient sweeping over the
solar surface had a speed typical of EUV waves. The shock wave was presumably
excited by an abrupt filament eruption. Both a weak shock approximation and a
power-law fit match kinematics of the transient near the Sun. Moreover, the
power-law fit matches expansion of the CME leading edge up to 24 solar radii.
The second, quasi-stationary EUV component near the dimming was presumably
associated with a stretched CME structure; no indications of opening magnetic
fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Looking at Vector Space and Language Models for IR using Density Matrices
In this work, we conduct a joint analysis of both Vector Space and Language
Models for IR using the mathematical framework of Quantum Theory. We shed light
on how both models allocate the space of density matrices. A density matrix is
shown to be a general representational tool capable of leveraging capabilities
of both VSM and LM representations thus paving the way for a new generation of
retrieval models. We analyze the possible implications suggested by our
findings.Comment: In Proceedings of Quantum Interaction 201
Decoherence of molecular wave packets in an anharmonic potential
The time evolution of anharmonic molecular wave packets is investigated under
the influence of the environment consisting of harmonic oscillators. These
oscillators represent photon or phonon modes and assumed to be in thermal
equilibrium. Our model explicitly incorporates the fact that in the case of a
nonequidistant spectrum the rates of the environment induced transitions are
different for each transition. The nonunitary time evolution is visualized by
the aid of the Wigner function related to the vibrational state of the
molecule. The time scale of decoherence is much shorter than that of
dissipation, and gives rise to states which are mixtures of localized states
along the phase space orbit of the corresponding classical particle. This
behavior is to a large extent independent of the coupling strength, the
temperature of the environment and also of the initial state.Comment: 7 pages, 4 figure
The dependence of the EIT wave velocity on the magnetic field strength
"EIT waves" are a wavelike phenomenon propagating in the corona, which were
initially observed in the extreme ultraviolet (EUV) wavelength by the EUV
Imaging Telescope (EIT). Their nature is still elusive, with the debate between
fast-mode wave model and non-wave model. In order to distinguish between these
models, we investigate the relation between the EIT wave velocity and the local
magnetic field in the corona. It is found that the two parameters show
significant negative correlation in most of the EIT wave fronts, {\it i.e.},
EIT wave propagates more slowly in the regions of stronger magnetic field. Such
a result poses a big challenge to the fast-mode wave model, which would predict
a strong positive correlation between the two parameters. However, it is
demonstrated that such a result can be explained by the fieldline stretching
model, \emph{i.e.,} that "EIT waves" are apparently-propagating brightenings,
which are generated by successive stretching of closed magnetic field lines
pushed by the erupting flux rope during coronal mass ejections (CMEs).Comment: 11 pages, 8 figures, accepted for publication in Solar Phy
On the relationship of shock waves to flares and coronal mass ejections
Context: Metric type II bursts are the most direct diagnostic of shock waves
in the solar corona.
Aims: There are two main competing views about the origin of coronal shocks:
that they originate in either blast waves ignited by the pressure pulse of a
flare or piston-driven shocks due to coronal mass ejections (CMEs). We studied
three well-observed type II bursts in an attempt to place tighter constraints
on their origins.
Methods: The type II bursts were observed by the ARTEMIS radio spectrograph
and imaged by the Nan\c{c}ay Radioheliograph (NRH) at least at two frequencies.
To take advantage of projection effects, we selected events that occurred away
from disk center.
Results: In all events, both flares and CMEs were observed. In the first
event, the speed of the shock was about 4200 km/s, while the speed of the CME
was about 850 km/s. This discrepancy ruled out the CME as the primary shock
driver. The CME may have played a role in the ignition of another shock that
occurred just after the high speed one. A CME driver was excluded from the
second event as well because the CMEs that appeared in the coronagraph data
were not synchronized with the type II burst. In the third event, the
kinematics of the CME which was determined by combining EUV and white light
data was broadly consistent with the kinematics of the type II burst, and,
therefore, the shock was probably CME-driven.
Conclusions: Our study demonstrates the diversity of conditions that may lead
to the generation of coronal shocks.Comment: 13 pages, 14 figures. "Astronomy and Astrophysics", in pres
Radio Bursts Associated with Flare and Ejecta in the 13 July 2004 Event
We investigate coronal transients associated with a GOES M6.7 class flare and
a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the
flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were
observed. An EIT wave was detected later on. The main features in the radio
dynamic spectrum were a frequency-drifting continuum and two type II bursts.
Our analysis shows that if the first type II burst was formed in the low
corona, the burst heights and speed are close to the projected distances and
speed of the Moreton wave (a chromospheric shock wave signature). The
frequency-drifting radio continuum, starting above 1 GHz, was formed almost two
minutes prior to any shock features becoming visible, and a fast-expanding
piston (visible as the continuum) could have launched another shock wave. A
possible scenario is that a flare blast overtook the earlier transient, and
ignited the first type II burst. The second type II burst may have been formed
by the same shock, but only if the shock was propagating at a constant speed.
This interpretation also requires that the shock-producing regions were located
at different parts of the propagating structure, or that the shock was passing
through regions with highly different atmospheric densities. This complex
event, with a multitude of radio features and transients at other wavelengths,
presents evidence for both blast-wave-related and CME-related radio emissions.Comment: 14 pages, 6 figures; Solar Physics Topical Issue, in pres
- …
