1,307 research outputs found
Exploring small energy scales with x-ray absorption and dichroism
Soft x-ray linear and circular dichroism (XLD, XMCD) experiments at the Ce
M edges are being used to determine the energy scales characterizing
the Ce degrees of freedom in the ultrathin ordered surface intermetallic
CeAg/Ag(111). We find that all relevant interactions, i. e. Kondo
scattering, crystal field splitting and magnetic exchange coupling occur on
small scales. Our study demonstrates the usefulness of combining x-ray
absorption experiments probing linear and circular dichroism owing to their
strong sensitivity for anisotropies in both charge distribution and
paramagnetic response, respectively.Comment: 5 pages, 4 figure
Shell-Model Monte Carlo Simulations of BCS-BEC Crossover in Few-Fermion Systems
We study a trapped system of fermions with a zero-range two-body interaction
using the shell-model Monte Carlo method, providing {\em ab initio} results for
the low particle number limit where mean-field theory is not applicable. We
present results for the -body energies as function of interaction strength,
particle number, and temperature. The subtle question of renormalization in a
finite model space is addressed and the convergence of our method and its
applicability across the BCS-BEC crossover is discussed. Our findings indicate
that very good quantitative results can be obtained on the BCS side, whereas at
unitarity and in the BEC regime the convergence is less clear. Comparison to
N=2 analytics at zero and finite temperature, and to other calculations in the
literature for show very good agreement.Comment: 6 pages, 5 figures, Revtex4, final versio
Thomas-Fermi Approximation for a Condensate with Higher-order Interactions
We consider the ground state of a harmonically trapped Bose-Einstein
condensate within the Gross-Pitaevskii theory including the effective-range
corrections for a two-body zero-range potential. The resulting non-linear
Schr\"odinger equation is solved analytically in the Thomas-Fermi approximation
neglecting the kinetic energy term. We present results for the chemical
potential and the condensate profiles, discuss boundary conditions, and compare
to the usual Thomas-Fermi approach. We discuss several ways to increase the
influence of effective-range corrections in experiment with magnetically
tunable interactions. The level of tuning required could be inside experimental
reach in the near future.Comment: 8 pages, RevTex4 format, 5 figure
Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap
The nature of strongly interacting Fermi gases and magnetism is one of the
most important and studied topics in condensed-matter physics. Still, there are
many open questions. A central issue is under what circumstances strong
short-range repulsive interactions are enough to drive magnetic correlations.
Recent progress in the field of cold atomic gases allows to address this
question in very clean systems where both particle numbers, interactions and
dimensionality can be tuned. Here we study fermionic few-body systems in a one
dimensional harmonic trap using a new rapidly converging effective-interaction
technique, plus a novel analytical approach. This allows us to calculate the
properties of a single spin-down atom interacting with a number of spin-up
particles, a case of much recent experimental interest. Our findings indicate
that, in the strongly interacting limit, spin-up and spin-down particles want
to separate in the trap, which we interpret as a microscopic precursor of
one-dimensional ferromagnetism in imbalanced systems. Our predictions are
directly addressable in current experiments on ultracold atomic few-body
systems.Comment: 12 pages, 6 figures, published version including two appendices on
our new numerical and analytical approac
Carbon-rich presolar grains from massive stars : subsolar ¹²C/¹³C and ¹⁴N/¹⁵N ratios and the mystery of ¹⁵N
Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing ¹²C/¹³C and ¹⁴N/¹⁵N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of ¹³C and ¹⁵N. The short-lived radionuclides ²²Na and ²⁶Al are increased by orders of magnitude. The production of radiogenic ²²Ne from the decay of ²²Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with ¹⁴N/¹⁵N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of ¹⁴N and ¹⁵N in the Galaxy, helping to produce the ¹⁴N/¹⁵N ratio in the solar system
Avalanche of Bifurcations and Hysteresis in a Model of Cellular Differentiation
Cellular differentiation in a developping organism is studied via a discrete
bistable reaction-diffusion model. A system of undifferentiated cells is
allowed to receive an inductive signal emenating from its environment.
Depending on the form of the nonlinear reaction kinetics, this signal can
trigger a series of bifurcations in the system. Differentiation starts at the
surface where the signal is received, and cells change type up to a given
distance, or under other conditions, the differentiation process propagates
through the whole domain. When the signal diminishes hysteresis is observed
On the asymptotic giant branch star origin of peculiar spinel grain OC2
Microscopic presolar grains extracted from primitive meteorites have
extremely anomalous isotopic compositions revealing the stellar origin of these
grains. The composition of presolar spinel grain OC2 is different from that of
all other presolar spinel grains. Large excesses of the heavy Mg isotopes are
present and thus an origin from an intermediate-mass (IM) asymptotic giant
branch (AGB) star was previously proposed for this grain. We discuss the
isotopic compositions of presolar spinel grain OC2 and compare them to
theoretical predictions. We show that the isotopic composition of O, Mg and Al
in OC2 could be the signature of an AGB star of IM and metallicity close to
solar experiencing hot bottom burning, or of an AGB star of low mass (LM) and
low metallicity suffering very efficient cool bottom processing. Large
measurement uncertainty in the Fe isotopic composition prevents us from
discriminating which model better represents the parent star of OC2. However,
the Cr isotopic composition of the grain favors an origin in an IM-AGB star of
metallicity close to solar. Our IM-AGB models produce a self-consistent
solution to match the composition of OC2 within the uncertainties related to
reaction rates. Within this solution we predict that the 16O(p,g)17F and the
17O(p,a)14N reaction rates should be close to their lower and upper limits,
respectively. By finding more grains like OC2 and by precisely measuring their
Fe and Cr isotopic compositions, it may be possible in the future to derive
constraints on massive AGB models from the study of presolar grains.Comment: 10 pages, 8 figures, accepted for publication on Astronomy &
Astrophysic
Asset Management in Volatile Markets
The 27th SUERF Colloquium in Munich in June 2008: New Trends in Asset Management: Exploring the Implications was already topical in the Summer of 2008. The subsequent dramatic events in the Autumn of 2008 made the presentations in Munich even more relevant to investors and bankers that want to understand what happens in their investment universe. In the present SUERF Study, we have collected a sample of outstanding colloquium contributions under the fitting headline: Asset Management in Volatile Markets.derivatives, financial innovation, asset management, finance-growth-nexus; Relative Value Strategy, Pair Trading, Slippage, Implementation Shortfall, Asset Management, Fin4Cast
- …
