7,049 research outputs found
A Relativistic Version of the Two-Level Atom in the Rest-Frame Instant Form of Dynamics
We define a relativistic version of the two-level atom, in which an extended
atom is replaced by a point particle carrying suitable Grassmann variables for
the description of the two-level structure and of the electric dipole. After
studying the isolated system "atom plus the electro-magnetic field" in the
electric-dipole representation as a parametrized Minkowski theory, we give its
restriction to the inertial rest frame and the explicit form of the Poincar\'e
generators. After quantization we get a two-level atom with a spin 1/2 electric
dipole and the relativistic generalization of the Hamiltonians of the Rabi and
Jaynes-Cummings models.Comment: 23 page
Microscopic measurement of the linear compressibilities of two-dimensional fatty acid mesophases
The linear compressibility of two-dimensional fatty acid mesophases has
determined by grazing incidence x-ray diffraction. Surface pressure vs
molecular area isotherms were reconstructed from these measurements, and the
linear compressibility (relative distortion along a given direction for
isotropic applied stress) was determined both in the sample plane and in a
plane normal to the aliphatic chain director (transverse plane). The linear
compressibilities range over two orders of magnitude from 0.1 to 10 m/N and are
distributed depending on their magnitude in 4 different sets which we are able
to associate with different molecular mechanisms. The largest compressibilities
(10m/N) are observed in the tilted phases. They are apparently independent of
the chain length and could be related to the reorganization of the headgroup
hydrogen-bounded network, whose role should be revalued. Intermediate
compressibilities are observed in phases with quasi long-range order
(directions normal to the molecular tilt in L_2 or L_2' phases, S phase), and
could be related to the ordering of these phases. The lowest compressibilities
are observed in the solid untilted CS phase and for 1 direction of the S and
L_2'' phases. They are similar to the compressibility of crystalline polymers
and correspond to the interactions between methyl groups in the crystal.
Finally, negative compressibilities are observed in the transverse plane for
L_2' and L_2'' phases and can be traced to subtle reorganizations upon
untilting.Comment: 24 pages, 17 figure
On the correlation between fragility and stretching in glassforming liquids
We study the pressure and temperature dependences of the dielectric
relaxation of two molecular glassforming liquids, dibutyl phtalate and
m-toluidine. We focus on two characteristics of the slowing down of relaxation,
the fragility associated with the temperature dependence and the stretching
characterizing the relaxation function. We combine our data with data from the
literature to revisit the proposed correlation between these two quantities. We
do this in light of constraints that we suggest to put on the search for
empirical correlations among properties of glassformers. In particular, argue
that a meaningful correlation is to be looked for between stretching and
isochoric fragility, as both seem to be constant under isochronic conditions
and thereby reflect the intrinsic effect of temperature
Disentangling density and temperature effects in the viscous slowing down of glassforming liquids
We present a consistent picture of the respective role of density and
temperature in the viscous slowing down of glassforming liquids and polymers.
Specifically, based in part upon a new analysis of simulation and experimental
data on liquid ortho-terphenyl, we conclude that a zeroth-order description of
the approach to the glass transition should be formulated in terms of a
temperature-driven super-Arrhenius activated behavior rather than a
density-driven congestion or jamming phenomenon. The density plays a role at a
quantitative level, but its effect on the viscosity and the structural
relaxation time can be simply described via a single parameter, an effective
interaction energy that is characteristic of the high temperature liquid
regime; as a result, density does not affect the ``fragility'' of the
glassforming system.Comment: RevTeX4, 8 pages, 8 eps figure
The Chrono-geometrical Structure of Special and General Relativity: a Re-Visitation of Canonical Geometrodynamics
A modern re-visitation of the consequences of the lack of an intrinsic notion
of instantaneous 3-space in relativistic theories leads to a reformulation of
their kinematical basis emphasizing the role of non-inertial frames centered on
an arbitrary accelerated observer. In special relativity the exigence of
predictability implies the adoption of the 3+1 point of view, which leads to a
well posed initial value problem for field equations in a framework where the
change of the convention of synchronization of distant clocks is realized by
means of a gauge transformation. This point of view is also at the heart of the
canonical approach to metric and tetrad gravity in globally hyperbolic
asymptotically flat space-times, where the use of Shanmugadhasan canonical
transformations allows the separation of the physical degrees of freedom of the
gravitational field (the tidal effects) from the arbitrary gauge variables.
Since a global vision of the equivalence principle implies that only global
non-inertial frames can exist in general relativity, the gauge variables are
naturally interpreted as generalized relativistic inertial effects, which have
to be fixed to get a deterministic evolution in a given non-inertial frame. As
a consequence, in each Einstein's space-time in this class the whole
chrono-geometrical structure, including also the clock synchronization
convention, is dynamically determined and a new approach to the Hole Argument
leads to the conclusion that "gravitational field" and "space-time" are two
faces of the same entity. This view allows to get a classical scenario for the
unification of the four interactions in a scheme suited to the description of
the solar system or our galaxy with a deperametrization to special relativity
and the subsequent possibility to take the non-relativistic limit.Comment: 33 pages, Lectures given at the 42nd Karpacz Winter School of
Theoretical Physics, "Current Mathematical Topics in Gravitation and
Cosmology", Ladek, Poland, 6-11 February 200
Connection between slow and fast dynamics of molecular liquids around the glass transition
The mean-square displacement (MSD) was measured by neutron scattering at
various temperatures and pressures for a number of molecular glass-forming
liquids. The MSD is invariant along the glass-transition line at the pressure
studied, thus establishing an ``intrinsic'' Lindemann criterion for any given
liquid. A one-to-one connection between the MSD's temperature dependence and
the liquid's fragility is found when the MSD is evaluated on a time scale of
approximately 4 nanoseconds, but does not hold when the MSD is evaluated at
shorter times. The findings are discussed in terms of the elastic model and the
role of relaxations, and the correlations between slow and fast dynamics are
addressed.Comment: accepted by Phys Rev E (2010
Measuring gravitational lens time delays using low-resolution radio monitoring observations
Obtaining lensing time delay measurements requires long-term monitoring
campaigns with a high enough resolution (< 1 arcsec) to separate the multiple
images. In the radio, a limited number of high-resolution interferometer arrays
make these observations difficult to schedule. To overcome this problem, we
propose a technique for measuring gravitational time delays which relies on
monitoring the total flux density with low-resolution but high-sensitivity
radio telescopes to follow the variation of the brighter image. This is then
used to trigger high-resolution observations in optimal numbers which then
reveal the variation in the fainter image. We present simulations to assess the
efficiency of this method together with a pilot project observing radio lens
systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very
Large Array (VLA) observations. This new method is promising for measuring time
delays because it uses relatively small amounts of time on high-resolution
telescopes. This will be important because instruments that have high
sensitivity but limited resolution, together with an optimum usage of followup
high-resolution observations from appropriate radio telescopes may in the
future be useful for gravitational lensing time delay measurements by means of
this new method.Comment: 10 pages, 7 figures, accepted by MNRA
Non-invasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization
Graphene has extraordinary mechanical and electronic properties, making it a
promising material for membrane based nanoelectromechanical systems (NEMS).
Here, chemical-vapor-deposited graphene is transferred onto target substrates
to suspend it over cavities and trenches for pressure-sensor applications. The
development of such devices requires suitable metrology methods, i.e.,
large-scale characterization techniques, to confirm and analyze successful
graphene transfer with intact suspended graphene membranes. We propose fast and
noninvasive Raman spectroscopy mapping to distinguish between freestanding and
substrate-supported graphene, utilizing the different strain and doping levels.
The technique is expanded to combine two-dimensional area scans with
cross-sectional Raman spectroscopy, resulting in three-dimensional Raman
tomography of membrane-based graphene NEMS. The potential of Raman tomography
for in-line monitoring is further demonstrated with a methodology for automated
data analysis to spatially resolve the material composition in micrometer-scale
integrated devices, including free-standing and substrate-supported graphene.
Raman tomography may be applied to devices composed of other two-dimensional
materials as well as silicon micro- and nanoelectromechanical systems.Comment: 23 pages, 5 figure
Static Observers in Curved Spaces and Non-inertial Frames in Minkowski Spacetime
Static observers in curved spacetimes may interpret their proper acceleration
as the opposite of a local gravitational field (in the Newtonian sense). Based
on this interpretation and motivated by the equivalence principle, we are led
to investigate congruences of timelike curves in Minkowski spacetime whose
acceleration field coincides with the acceleration field of static observers of
curved spaces. The congruences give rise to non-inertial frames that are
examined. Specifically we find, based on the locality principle, the embedding
of simultaneity hypersurfaces adapted to the non-inertial frame in an explicit
form for arbitrary acceleration fields. We also determine, from the Einstein
equations, a covariant field equation that regulates the behavior of the proper
acceleration of static observers in curved spacetimes. It corresponds to an
exact relativistic version of the Newtonian gravitational field equation. In
the specific case in which the level surfaces of the norm of the acceleration
field of the static observers are maximally symmetric two-dimensional spaces,
the energy-momentum tensor of the source is analyzed.Comment: 28 pages, 4 figures
- …
