18,219 research outputs found
Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials
We present four types of infinitely many exactly solvable Fokker-Planck
equations, which are related to the newly discovered exceptional orthogonal
polynomials. They represent the deformed versions of the Rayleigh process and
the Jacobi process.Comment: 17 pages, 4 figure
Magnetic susceptibility study of hydrated and non-hydrated NaxCoO2-yH2O single crystals
We have measured the magnetic susceptibility of single crystal samples of
non-hydrated NaxCoO2 (x ~ 0.75, 0.67, 0.5, and 0.3) and hydrated Na0.3CoO2-yH2O
(y ~ 0, 0.6, 1.3). Our measurements reveal considerable anisotropy between the
susceptibilities with H||c and H||ab. The derived anisotropic g-factor ratio
(g_ab/g_c) decreases significantly as the composition is changed from the
Curie-Weiss metal with x = 0.75 to the paramagnetic metal with x = 0.3. Fully
hydrated Na0.3CoO2-1.3H2O samples have a larger susceptibility than
non-hydrated Na0.3CoO2 samples, as well as a higher degree of anisotropy. In
addition, the fully hydrated compound contains a small additional fraction of
anisotropic localized spins.Comment: 6 pages, 5 figure
Singlet-Triplet Excitations in the Unconventional Spin-Peierls System TiOBr
We have performed time-of-flight neutron scattering measurements on powder
samples of the unconventional spin-Peierls compound TiOBr using the
fine-resolution Fermi chopper spectrometer (SEQUOIA) at the SNS. These
measurements reveal two branches of magnetic excitations within the
commensurate and incommensurate spin-Peierls phases, which we associate with n
= 1 and n = 2 triplet excitations out of the singlet ground state. These
measurements represent the first direct measure of the singlet-triplet energy
gap in TiOBr, which is determined to be Eg = 21.2 +/- 1.0 meV.Comment: 5 pages, 4 figures, submitted for publicatio
Experimental signatures of the quantum-classical transition in a nanomechanical oscillator modeled as a damped driven double-well problem
We demonstrate robust and reliable signatures for the transition from quantum
to classical behavior in the position probability distribution of a damped
double-well system using the Qunatum State Diffusion approach to open quantum
systems. We argue that these signatures are within experimental reach, for
example in a doubly-clamped nanomechanical beam.Comment: Proceedings of the conference FMQT 1
Sr impurity effects on the magnetic correlations of LaSrCuO
We examine the low-temperature magnetic properties of moderately doped
LaSrCuO paying particular attention to the spin-glass (SG) phase and the C-IC
transition as they are affected by Sr impurity disorder. New measurements of
the low-temperature susceptibility in the SG phase show an increase of an
anomalously small Curie constant with doping. This behaviour is explained in
terms of our theoretical work that finds small clusters of AFM correlated
regions separated by disordered domain walls. The domain walls lead to a
percolating sequence of paths connecting the impurities. We predict that for
this spin morphology the Curie constant should scale as , a
result that is quantitatively in agreement with experiment. Also, we find that
the magnetic correlations in the ground states in the SG phase are
commensurate, and that this behaviour should persist at higher temperatures
where the holes should move along the domain walls. However, our results show
that incommensurate correlations develop continuously around 5 % doping,
consistent with recent measurements by Yamada.Comment: 30 pages, revtex, 8 .ps format figures (2 meant to be in colour), to
be published in Physical Review B
Flux pinning and phase separation in oxygen rich La2-xSrxCuO4+y system
We have studied the magnetic characteristics of a series of super-oxygenated
La2-xSrxCuO4+y samples. As shown in previous work, these samples spontaneously
phase separate into an oxygen rich superconducting phase with a TC near 40 K
and an oxygen poor magnetic phase that also orders near 40 K. All samples
studied are highly magnetically reversible even to low temperatures. Although
the internal magnetic regions of these samples might be expected to act as
pinning sites, our present study shows that they do not favor flux pinning.
Flux pinning requires a matching condition between the defect and the
superconducting coherence length. Thus, our results imply that the magnetic
regions are too large to act as pinning centers. This also implies that the
much greater flux pinning in typical La2-xSrxCuO4 materials is the result of
nanoscale inhomogeneities that grow to become the large magnetic regions in the
super-oxygenated materials. The superconducting regions of the phase separated
materials are in that sense cleaner and more homogenous than in the typical
cuprate superconductor.Comment: 4 figures 8 pages Submitted to PR
Inherent Rheology of a Granular Fluid in Uniform Shear Flow
In contrast to normal fluids, a granular fluid under shear supports a steady
state with uniform temperature and density since the collisional cooling can
compensate locally for viscous heating. It is shown that the hydrodynamic
description of this steady state is inherently non-Newtonian. As a consequence,
the Newtonian shear viscosity cannot be determined from experiments or
simulation of uniform shear flow. For a given degree of inelasticity, the
complete nonlinear dependence of the shear viscosity on the shear rate requires
the analysis of the unsteady hydrodynamic behavior. The relationship to the
Chapman-Enskog method to derive hydrodynamics is clarified using an approximate
Grad's solution of the Boltzmann kinetic equationComment: 10 pages, 4 figures; substantially enlarged version; to be published
in PR
Elementary amenable subgroups of R. Thompson's group F
The subgroup structure of Thompson's group F is not yet fully understood. The
group F is a subgroup of the group PL(I) of orientation preserving, piecewise
linear self homeomorphisms of the unit interval and this larger group thus also
has a poorly understood subgroup structure. It is reasonable to guess that F is
the "only" subgroup of PL(I) that is not elementary amenable. In this paper, we
explore the complexity of the elementary amenable subgroups of F in an attempt
to understand the boundary between the elementary amenable subgroups and the
non-elementary amenable. We construct an example of an elementary amenable
subgroup up to class (height) omega squared, where omega is the first infinite
ordinal.Comment: 20 page
- …
