39,610 research outputs found
Low-frequency microwave radiometer for N-ROSS
The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations. The target SST accuracy is + or - 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other esstential parameters of the low frequency microwave radiometer (LFMR). It will be a dual polarized, dual frequency system at 5.2 and 10.4 GHz using a 4.9 meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988
Field-induced structure transformation in electrorheological solids
We have computed the local electric field in a body-centered tetragonal (BCT)
lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to
examine the effects of a structure transformation on the local field strength.
For the ground state of an electrorheological solid of hard spheres, we
identified a novel structure transformation from the BCT to the face-centered
cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard
sphere constraint. In contrast to the previous results, the local field
exhibits a non-monotonic transition from BCT to FCC. As c increases from the
BCT ground state, the local field initially decreases rapidly towards the
isotropic value at the body-centered cubic lattice, decreases further, reaching
a minimum value and increases, passing through the isotropic value again at an
intermediate lattice, reaches a maximum value and finally decreases to the FCC
value. An experimental realization of the structure transformation is
suggested. Moreover, the change in the local field can lead to a generalized
Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.
Extraction of Airways with Probabilistic State-space Models and Bayesian Smoothing
Segmenting tree structures is common in several image processing
applications. In medical image analysis, reliable segmentations of airways,
vessels, neurons and other tree structures can enable important clinical
applications. We present a framework for tracking tree structures comprising of
elongated branches using probabilistic state-space models and Bayesian
smoothing. Unlike most existing methods that proceed with sequential tracking
of branches, we present an exploratory method, that is less sensitive to local
anomalies in the data due to acquisition noise and/or interfering structures.
The evolution of individual branches is modelled using a process model and the
observed data is incorporated into the update step of the Bayesian smoother
using a measurement model that is based on a multi-scale blob detector.
Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother,
which provides Gaussian density estimates of branch states at each tracking
step. We select likely branch seed points automatically based on the response
of the blob detection and track from all such seed points using the RTS
smoother. We use covariance of the marginal posterior density estimated for
each branch to discriminate false positive and true positive branches. The
method is evaluated on 3D chest CT scans to track airways. We show that the
presented method results in additional branches compared to a baseline method
based on region growing on probability images.Comment: 10 pages. Pre-print of the paper accepted at Workshop on Graphs in
Biomedical Image Analysis. MICCAI 2017. Quebec Cit
DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration.
Deleted in liver cancer 1 (DLC1) is a RhoGTPase activation protein-containing tumor suppressor that associates with various types of cancer. Although DLC2 shares a similar domain structure with that of DLC1, the function of DLC2 is not well characterized. Here, we describe the expression and ablation of DLC2 in mice using a reporter-knockout approach. DLC2 is expressed in several tissues and in endothelial cells (ECs) of blood vessels. Although ECs and blood vessels show no histological abnormalities and mice appear overall healthy, DLC2-mutant mice display enhanced angiogenic responses induced by matrigel and by tumor cells. Silencing of DLC2 in human ECs has reduced cell attachment, increased migration, and tube formation. These changes are rescued by silencing of RhoA, suggesting that the process is RhoA pathway dependent. These results indicate that DLC2 is not required for mouse development and normal vessel formation, but may protect mouse from unwanted angiogenesis induced by, for example, tumor cells
The Submillimeter Array
The Submillimeter Array (SMA), a collaborative project of the Smithsonian
Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy
and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total
of eight 6-m telescopes comprise the array, which will cover the frequency
range of 180-900 GHz. All eight telescopes have been deployed and are
operational. First scientific results utilizing the three receiver bands at
230, 345, and 690 GHz have been obtained and are presented in the accompanying
papers.Comment: 10 pages, 4 figure
Quantum models related to fouled Hamiltonians of the harmonic oscillator
We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator
which provide, at the classical level, the same equation of motion as the
conventional Hamiltonian. These Hamiltonians, say and , result
to be explicitly time-dependent and can be expressed as a formal rotation of
two cubic polynomial functions, and , of the canonical variables
(q,p).
We investigate the role of these fouled Hamiltonians at the quantum level.
Adopting a canonical quantization procedure, we construct some quantum models
and analyze the related eigenvalue equations. One of these models is described
by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a
discrete spectrum on the real line. A self-adjoint extension is fixed by
choosing the spectral parameter of the associated eigenvalue
equation equal to zero. The spectral problem is discussed in the context of
three different representations. For , the eigenvalue equation is
exactly solved in all these representations, in which square-integrable
solutions are explicity found. A set of constants of motion corresponding to
these quantum models is also obtained. Furthermore, the algebraic structure
underlying the quantum models is explored. This turns out to be a nonlinear
(quadratic) algebra, which could be applied for the determination of
approximate solutions to the eigenvalue equations.Comment: 24 pages, no figures, accepted for publication on JM
Insecurity of Quantum Secure Computations
It had been widely claimed that quantum mechanics can protect private
information during public decision in for example the so-called two-party
secure computation. If this were the case, quantum smart-cards could prevent
fake teller machines from learning the PIN (Personal Identification Number)
from the customers' input. Although such optimism has been challenged by the
recent surprising discovery of the insecurity of the so-called quantum bit
commitment, the security of quantum two-party computation itself remains
unaddressed. Here I answer this question directly by showing that all
``one-sided'' two-party computations (which allow only one of the two parties
to learn the result) are necessarily insecure. As corollaries to my results,
quantum one-way oblivious password identification and the so-called quantum
one-out-of-two oblivious transfer are impossible. I also construct a class of
functions that cannot be computed securely in any ``two-sided'' two-party
computation. Nevertheless, quantum cryptography remains useful in key
distribution and can still provide partial security in ``quantum money''
proposed by Wiesner.Comment: The discussion on the insecurity of even non-ideal protocols has been
greatly extended. Other technical points are also clarified. Version accepted
for publication in Phys. Rev.
Is Quantum Bit Commitment Really Possible?
We show that all proposed quantum bit commitment schemes are insecure because
the sender, Alice, can almost always cheat successfully by using an
Einstein-Podolsky-Rosen type of attack and delaying her measurement until she
opens her commitment.Comment: Major revisions to include a more extensive introduction and an
example of bit commitment. Overlap with independent work by Mayers
acknowledged. More recent works by Mayers, by Lo and Chau and by Lo are also
noted. Accepted for publication in Phys. Rev. Let
- …
