601 research outputs found

    Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia

    Get PDF
    Loss-of-function mutations in hematopoietic transcription factors including PAX5 occur in most cases of B-progenitor acute lymphoblastic leukemia (B-ALL), a disease characterized by the accumulation of undifferentiated lymphoblasts. Although PAX5 mutation is a critical driver of B-ALL development in mice and humans, it remains unclear how its loss contributes to leukemogenesis and whether ongoing PAX5 deficiency is required for B-ALL maintenance. Here we used transgenic RNAi to reversibly suppress endogenous Pax5 expression in the hematopoietic compartment of mice, which cooperates with activated signal transducer and activator of transcription 5 (STAT5) to induce B-ALL. In this model, restoring endogenous Pax5 expression in established B-ALL triggers immunophenotypic maturation and durable disease remission by engaging a transcriptional program reminiscent of normal B-cell differentiation. Notably, even brief Pax5 restoration in B-ALL cells causes rapid cell cycle exit and disables their leukemia-initiating capacity. These and similar findings in human B-ALL cell lines establish that Pax5 hypomorphism promotes B-ALL self-renewal by impairing a differentiation program that can be re-engaged despite the presence of additional oncogenic lesions. Our results establish a causal relationship between the hallmark genetic and phenotypic features of B-ALL and suggest that engaging the latent differentiation potential of B-ALL cells may provide new therapeutic entry points.Grace J. Liu, Luisa Cimmino, Julian G. Jude, Yifang Hu, Matthew T. Witkowski, Mark D. McKenzie, Mutlu Kartal-Kaess, Sarah A. Best, Laura Tuohey, Yang Liao, Wei Shi, Charles G. Mullighan, Michael A. Farrar, Stephen L. Nutt, Gordon K. Smyth, Johannes Zuber, and Ross A. Dickin

    Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia

    Get PDF
    T-cell acute lymphoblastic leukaemia (T-ALL) is a haematological malignancy with a dismal overall prognosis, including a relapse rate of up to 25%, mainly because of the lack of non-cytotoxic targeted therapy options. Drugs that target the function of key epigenetic factors have been approved in the context of haematopoietic disorders, and mutations that affect chromatin modulators in a variety of leukaemias have recently been identified; however, ‘epigenetic’ drugs are not currently used for T-ALL treatment. Recently, we described that the polycomb repressive complex 2 (PRC2) has a tumour-suppressor role in T-ALL. Here we delineated the role of the histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX in T-ALL. We show that JMJD3 is essential for the initiation and maintenance of T-ALL, as it controls important oncogenic gene targets by modulating H3K27 methylation. By contrast, we found that UTX functions as a tumour suppressor and is frequently genetically inactivated in T-ALL. Moreover, we demonstrated that the small molecule inhibitor GSKJ4 (ref. 5) affects T-ALL growth, by targeting JMJD3 activity. These findings show that two proteins with a similar enzymatic function can have opposing roles in the context of the same disease, paving the way for treating haematopoietic malignancies with a new category of epigenetic inhibitors.National Institutes of Health (U.S.) (Grant R37-HD04502

    Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas

    Get PDF
    The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.Jinghui Zhang, Gang Wu, Claudia P Miller, Ruth G Tatevossian, James D Dalton, Bo Tang, Wilda Orisme, Chandanamali Punchihewa, Matthew Parker, Ibrahim Qaddoumi, Fredrick A Boop, Charles Lu, Cyriac Kandoth, Li Ding, Ryan Lee, Robert Huether, Xiang Chen, Erin Hedlund, Panduka Nagahawatte, Michael Rusch, Kristy Boggs, Jinjun Cheng, Jared Becksfort, Jing Ma, Guangchun Song, Yongjin Li, Lei Wei, Jianmin Wang, Sheila Shurtleff, John Easton, David Zhao, Robert S Fulton, Lucinda L Fulton, David J Dooling, Bhavin Vadodaria, Heather L Mulder, Chunlao Tang, Kerri Ochoa, Charles G Mullighan, Amar Gajjar, Richard Kriwacki, Denise Sheer, Richard J Gilbertson, Elaine R Mardis, Richard K Wilson, James R Downing, Suzanne J Baker and David W Elliso

    Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance

    Get PDF
    Background: We carried out a candidate gene association study in pediatric acute lymphoblastic leukemia (ALL) to identify possible genetic risk factors in a Hungarian population. Methods: The results were evaluated with traditional statistical methods and with our newly developed Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method. We collected genomic DNA and clinical data from 543 children, who underwent chemotherapy due to ALL, and 529 healthy controls. Altogether 66 single nucleotide polymorphisms (SNPs) in 19 candidate genes were genotyped. Results: With logistic regression, we identified 6 SNPs in the ARID5B and IKZF1 genes associated with increased risk to B-cell ALL, and two SNPs in the STAT3 gene, which decreased the risk to hyperdiploid ALL. Because the associated SNPs were in linkage in each gene, these associations corresponded to one signal per gene. The odds ratio (OR) associated with the tag SNPs were: OR = 1.69, P = 2.22x10-7 for rs4132601 (IKZF1), OR = 1.53, P = 1.95x10-5 for rs10821936 (ARID5B) and OR = 0.64, P = 2.32x10-4 for rs12949918 (STAT3). With the BN-BMLA we confirmed the findings of the frequentist-based method and received additional information about the nature of the relations between the SNPs and the disease. E.g. the rs10821936 in ARID5B and rs17405722 in STAT3 showed a weak interaction, and in case of T-cell lineage sample group, the gender showed a weak interaction with three SNPs in three genes. In the hyperdiploid patient group the BN-BMLA detected a strong interaction among SNPs in the NOTCH1, STAT1, STAT3 and BCL2 genes. Evaluating the survival rate of the patients with ALL, the BN-BMLA showed that besides risk groups and subtypes, genetic variations in the BAX and CEBPA genes might also influence the probability of survival of the patients. Conclusions: In the present study we confirmed the roles of genetic variations in ARID5B and IKZF1 in the susceptibility to B-cell ALL. With the newly developed BN-BMLA method several gene-gene, gene-phenotype and phenotype-phenotype connections were revealed. We showed several advantageous features of the new method, and suggested that in gene association studies the BN-BMLA might be a useful supplementary to the traditional frequentist-based statistical method

    Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukemia

    Get PDF
    Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2DBCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered.This work was supported in part by the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital; by a Stand Up to Cancer Innovative Research Grant and St. Baldrick’s Foundation Scholar Award (to C.G.M.); by a St. Baldrick’s Consortium Award (S.P.H.), by a Leukemia and Lymphoma Society Specialized Center of Research grant (S.P.H. and C.G.M.), by a Lady Tata Memorial Trust Award (I.I.), by a Leukemia and Lymphoma Society Special Fellow Award and Alex’s Lemonade Stand Foundation Young Investigator Awards (K.R.), by an Alex’s Lemonade Stand Foundation Award (M.L.) and by National Cancer Institute Grants CA21765 (St Jude Cancer Center Support Grant), U01 CA157937 (C.L.W. and S.P.H.), U24 CA114737 (to Dr Gastier-Foster), NCI Contract HHSN261200800001E (to Dr Gastier-Foster), U10 CA180820 (ECOG-ACRIN Operations) and CA180827 (E.P.); U10 CA180861 (C.D.B. and G.M.); U24 CA196171 (The Alliance NCTN Biorepository and Biospecimen Resource); CA145707 (C.L.W. and C.G.M.); and grants to the COG: U10 CA98543 (Chair’s grant and supplement to support the COG ALL TARGET project), U10 CA98413 (Statistical Center) and U24 CA114766 (Specimen Banking). This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract Number HHSN261200800001E

    Tumour Cell Heterogeneity.

    Get PDF
    The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment

    Polymorphisms in immunoregulatory genes and the risk of histologic chorioamnionitis in Caucasoid women: a case control study

    Get PDF
    BACKGROUND: Chorioamnionitis is a common underlying cause of preterm birth (PTB). It is hypothesised that polymorphisms in immunoregulatory genes influence the host response to infection and subsequent preterm birth. The relationship between histologic chorioamnionitis and 22 single nucleotide polymorphisms in 11 immunoregulatory genes was examined in a case-control study. METHODS: Placentas of 181 Caucasoid women with spontaneous PTB prior to 35 weeks were examined for histologic chorioamnionitis. Polymorphisms in genes IL1A, IL1B, IL1RN, IL1R1, tumour necrosis factor (TNF), IL4, IL6, IL10, transforming growth factor beta-1 (TGFB1), Fas (TNFRSF6), and mannose-binding lectin (MBL2) were genotyped by polymerase chain reaction and sequence specific primers. Multivariable logistic regression including demographic and genetic variables and Kaplan-Meier survival analyses of genotype frequencies and pregnancy outcome were performed. RESULTS: Sixty-nine (34%) women had histologic evidence of acute chorioamnionitis. Carriage of the IL10-1082A/-819T/592A (ATA) haplotype [Multivariable Odds ratio (MOR) 1.9, P = 0.05] and MBL2 codon 54Asp allele (MOR 2.0, P = 0.04), were positively associated with chorioamnionitis, while the TNFRSF6-1377A/-670G (AG) haplotype (MOR 0.4, P = 0.03) and homozygosity for TGFB1-800G/509T (GT) haplotype (MOR 0.2, P = 0.04) were negatively associated. CONCLUSION: These findings demonstrate that polymorphisms in immunoregulatory genes IL10, MBL2, TNFRSF6 and TGFB1 may influence susceptibility to chorioamnionitis

    The landscape of somatic copy-number alteration across human cancers

    Get PDF
    available in PMC 2010 August 18.A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P50CA90578)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109038))National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109467)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA085859)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA 098101)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, K08CA122833

    Acute lymphoblastic leukemia displays a distinct highly methylated genome

    Get PDF
    DNA methylation is tightly regulated during development and is stably maintained in healthy cells. In contrast, cancer cells are commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data from large cohorts at a genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing across ALL subtypes, leukemia cell lines and healthy hematopoietic cells, and show that unlike most cancers, ALL samples exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T cell ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients, which is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome and provide further insights into the non-canonical regulation of methylation in cancer

    NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    Get PDF
    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases
    corecore