419 research outputs found
Longitudinal broadening of near side jets due to parton cascade
Longitudinal broadening along direction on near side in
two-dimensional () di-hadron correlation
distribution has been studied for central Au+Au collisions at =
200 GeV, within a dynamical multi-phase transport model. It was found that the
longitudinal broadening is generated by a longitudinal flow induced by strong
parton cascade in central Au+Au collisions, in comparison with p+p collisions
at = 200 GeV. The longitudinal broadening may shed light on the
information about strongly interacting partonic matter at RHIC.Comment: 5 pages, 4 figures; accepted by Eur. Phys. J.
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
Qualitative Properties of Magnetic Fields in Scalar Field Cosmology
We study the qualitative properties of the class of spatially homogeneous
Bianchi VI_o cosmological models containing a perfect fluid with a linear
equation of state, a scalar field with an exponential potential and a uniform
cosmic magnetic field, using dynamical systems techniques. We find that all
models evolve away from an expanding massless scalar field model in which the
matter and the magnetic field are negligible dynamically. We also find that for
a particular range of parameter values the models evolve towards the usual
power-law inflationary model (with no magnetic field) and, furthermore, we
conclude that inflation is not fundamentally affected by the presence of a
uniform primordial magnetic field. We investigate the physical properties of
the Bianchi I magnetic field models in some detail.Comment: 12 pages, 2 figures in REVTeX format. to appear in Phys. Rev.
The common ABCA4 variant p.Asn1868ile shows nonpenetrance and variable expression of stargardt disease when present in trans with severe variants
PURPOSE. To assess the occurrence and the disease expression of the common p.Asn1868Ile variant in patients with Stargardt disease (STGD1) harboring known, monoallelic causal ABCA4 variants. METHODS. The coding and noncoding regions of ABCA4 were sequenced in 67 and 63 STGD1 probands respectively, harboring monoallelic ABCA4 variants. In case p.Asn1868Ile was detected, segregation analysis was performed whenever possible. Probands and affected siblings harboring p.Asn1868Ile without additional variants in cis were clinically evaluated retrospe
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable
The behavior of magnetic field in plane symmetric inhomogeneous cosmological
models for bulk viscous distribution is investigated. The coefficient of bulk
viscosity is assumed to be a power function of mass density . The values of cosmological constant for these models are
found to be small and positive which are supported by the results from recent
supernovae Ia observations. Some physical and geometric aspects of the models
are also discussed.Comment: 18 pages, LaTex, no figur
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
- …
