80 research outputs found
Spin chains with dynamical lattice supersymmetry
Spin chains with exact supersymmetry on finite one-dimensional lattices are
considered. The supercharges are nilpotent operators on the lattice of
dynamical nature: they change the number of sites. A local criterion for the
nilpotency on periodic lattices is formulated. Any of its solutions leads to a
supersymmetric spin chain. It is shown that a class of special solutions at
arbitrary spin gives the lattice equivalents of the N=(2,2) superconformal
minimal models. The case of spin one is investigated in detail: in particular,
it is shown that the Fateev-Zamolodchikov chain and its off-critical extension
admits a lattice supersymmetry for all its coupling constants. Its
supersymmetry singlets are thoroughly analysed, and a relation between their
components and the weighted enumeration of alternating sign matrices is
conjectured.Comment: Revised version, 52 pages, 2 figure
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA
Differential inclusive jet cross sections in neutral current deep inelastic
ep scattering have been measured with the ZEUS detector. Three phase-space
regions have been selected in order to study parton dynamics where the effects
of BFKL evolution might be present. The measurements have been compared to the
predictions of leading-logarithm parton shower Monte Carlo models and
fixed-order perturbative QCD calculations. In the forward region, QCD
calculations at order alpha_s^1 underestimate the data up to an order of
magnitude at low x. An improved description of the data in this region is
obtained by including QCD corrections at order alpha_s^2, which account for the
lowest-order t-channel gluon-exchange diagrams, highlighting the importance of
such terms in parton dynamics at low x.Comment: 25 pages, 4 figure
Measurement of dijet photoproduction for events with a leading neutron at HERA
Differential cross sections for dijet photoproduction and this process in
association with a leading neutron, e+ + p -> e+ + jet + jet + X (+ n), have
been measured with the ZEUS detector at HERA using an integrated luminosity of
40 pb-1. The fraction of dijet events with a leading neutron was studied as a
function of different jet and event variables. Single- and double-differential
cross sections are presented as a function of the longitudinal fraction of the
proton momentum carried by the leading neutron, xL, and of its transverse
momentum squared, pT^2. The dijet data are compared to inclusive DIS and
photoproduction results; they are all consistent with a simple pion-exchange
model. The neutron yield as a function of xL was found to depend only on the
fraction of the proton beam energy going into the forward region, independent
of the hard process. No firm conclusion can be drawn on the presence of
rescattering effects.Comment: 40 pages, 18 figure
Measurement of the reaction in deep inelastic scattering at HERA
The production of phi mesons in the reaction e(+)p --> e(+)phi p (phi --> K+K-), for 7 phi p cross section rises strongly with W. This behaviour is similar to that previously found for the gamma*p --> rho(0)p cross section. This strong dependence cannot be explained by production through soft pomeron exchange, It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small x. The ratio of sigma(phi)/sigma(rho(0)), which has previously been determined by ZEUS to be 0.065 +/- 0.013 (stat.) in photoproduction at a mean W of 70 GeV, is measured to be 0.18 +/- 0.05 (stat.) +/- 0.03 (syst.) at a mean Q(2) of 12.3 GeV2 and mean W of approximate to 100 GeV and is thus approaching at large Q(2) the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism
Observation of Events with an Energetic Forward Neutron in Deep Inelastic Scattering at HERA
In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10-4 \u3c xBJ \u3c 6 · 10-3 and 10 \u3c Q2 \u3c 100 GeV2
Delayed mucosal antiviral responses despite robust peripheral inflammation in fatal COVID-19
Background
While inflammatory and immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished coronavirus disease 2019 (COVID-19) severity categories, and relate these to disease progression and peripheral inflammation.
Methods
We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalized with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0–5 days after symptom onset) or late (6–20 days after symptom onset) phase.
Results
Patients that survived severe COVID-19 showed interferon (IFN)-dominated mucosal immune responses (IFN-γ, CXCL10, and CXCL13) early in infection. These early mucosal responses were absent in patients who would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by interleukin 2 (IL-2), IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease.
Conclusions
Defective early mucosal antiviral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19
Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination
BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
- …
