165 research outputs found
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
Charmonium Production in Deep Inelastic Scattering at HERA
The electroproduction of J/psi and psi(2S) mesons is studied in elastic, quasi-elastic and inclusive reactions for four momentum transfers 2 Q^2 80 GeV^2 and photon-proton centre of mass energies 25 W 180 GeV. The data were taken with the H1 detector at the electron proton collider HERA in the years 1995 to 1997. The total virtual photon-proton cross section for elastic J/psi production is measured as a function of Q^2 and W. The dependence of the production rates on the square of the momentum transfer from the proton (t) is extracted. Decay angular distributions are analysed and the ratio of the longitudinal and transverse cross sections is derived. The ratio of the cross sections for quasi-elastic psi(2S) and J/psi meson production is measured as a function of Q^2. The results are discussed in terms of theoretical models based upon perturbative QCD. Differential cross sections for inclusive and inelastic production of J/psi mesons are determined and predictions within two theoretical frameworks are compared with the data, the non-relativistic QCD factorization approach including colour octet and colour singlet contributions, and the model of Soft Colour Interactions
Detection of B-mode polarization at degree angular scales by BICEP2
We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300 μKCMB√s . BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 305σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5–10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r=0.20
+0.07
−0.05, with r=0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets
2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole
Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave
Background (CMB) observations is an essential step towards ultimately reaching
the sensitivity to measure primordial gravitational waves (PGWs), the sign of
inflation after the Big-Bang that would be imprinted on the CMB. The BICEP
Array telescope is a set of multi-frequency cameras designed to constrain the
energy scale of inflation through CMB B-mode searches while also controlling
the polarized galactic foregrounds. The lowest frequency BICEP Array receiver
(BA1) has been observing from the South Pole since 2020 and provides 30 GHz and
40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this
paper, we present the design of the BA1 detectors and the full optical
characterization of the camera including the on-sky performance at the South
Pole. The paper also introduces the design challenges during the first
observing season including the effect of out-of-band photons on detectors
performance. It also describes the tests done to diagnose that effect and the
new upgrade to minimize these photons, as well as installing more dichroic
detectors during the 2022 deployment season to improve the BA1 sensitivity. We
finally report background noise measurements of the detectors with the goal of
having photon noise dominated detectors in both optical channels. BA1 achieves
an improvement in mapping speed compared to the previous deployment season.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 2022
(AS22
Electromyography and recovery of the blink reflex in involuntary eyelid closure: a comparative study.
A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876
Investigations of two resonant planets orbiting a star or two resonant
satellites orbiting a planet often rely on a few resonant and secular terms in
order to obtain a representative quantitative description of the system's
dynamical evolution. We present a semianalytic model which traces the orbital
evolution of any two resonant bodies in a first- through fourth-order
eccentricity or inclination-based resonance dominated by the resonant and
secular arguments of the user's choosing. By considering the variation of
libration width with different orbital parameters, we identify regions of phase
space which give rise to different resonant ''depths,'' and propose methods to
model libration profiles. We apply the model to the GJ 876 extrasolar planetary
system, quantify the relative importance of the relevant resonant and secular
contributions, and thereby assess the goodness of the common approximation of
representing the system by just the presumably dominant terms. We highlight the
danger in using ''order'' as the metric for accuracy in the orbital solution by
revealing the unnatural libration centers produced by the second-order, but not
first-order, solution, and by demonstrating that the true orbital solution lies
somewhere ''in-between'' the third- and fourth-order solutions. We also present
formulas used to incorporate perturbations from central-body oblateness and
precession, and a protoplanetary or protosatellite thin disk with gaps, into a
resonant system. We quantify these contributions to the GJ 876 system, and
thereby highlight the conditions which must exist for multi-planet exosystems
to be significantly influenced by such factors. We find that massive enough
disks may convert resonant libration into circulation; such disk-induced
signatures may provide constraints for future studies of exoplanet systems.Comment: 39 pages of body text, 21 figures, 5 tables, 1 appendix, accepted for
publication in Celestial Mechanics and Dynamical Astronom
A Measurement of the Proton Structure Function
A measurement of the proton structure function is reported
for momentum transfer squared between 4.5 and 1600 and
for Bjorken between and 0.13 using data collected by the
HERA experiment H1 in 1993. It is observed that increases
significantly with decreasing , confirming our previous measurement made
with one tenth of the data available in this analysis. The dependence is
approximately logarithmic over the full kinematic range covered. The subsample
of deep inelastic events with a large pseudo-rapidity gap in the hadronic
energy flow close to the proton remnant is used to measure the "diffractive"
contribution to .Comment: 32 pages, ps, appended as compressed, uuencoded fil
- …
