72 research outputs found

    Tidal Evolution of Close Binary Asteroid Systems

    Get PDF
    We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than five times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent.Comment: 40 pages, 2 tables, 8 figure

    Closed-Form transformation between geodetic and ellipsoidal coordinates

    Get PDF
    We present formulas for direct closed-form transformation between geodetic coordinates(Φ, λ, h) and ellipsoidal coordinates (β, λ, u) for any oblate ellipsoid of revolution.These will be useful for those dealing with ellipsoidal representations of the Earth's gravityfield or other oblate ellipsoidal figures. The numerical stability of the transformations for nearpolarand near-equatorial regions is also considered

    Parting with illusions in evolutionary ethics

    Full text link
    I offer a critical analysis of a view that has become a dominant aspect of recent thought on the relationship between evolution and morality, and propose an alternative. An ingredient in Michael Ruse's 'error theory' (Ruse 1995) is that belief in moral (prescriptive, universal, and nonsubjective) guidelines arose in humans because such belief results in the performance of adaptive cooperative behaviors. This statement relies on two particular connections: between ostensible and intentional types of altruism, and between intentional altruism and morality. The latter connection is problematic because it makes morality redundant, its role having already been fulfilled by the psychological dispositions that constitute intentional altruism. Both behavioral ecology and moral psychology support this criticism, and neither human behavioral flexibility nor the self-regard / other-regard distinction can provide a defense of the error theory. I conclude that morality did not evolve to curb rampant selfishness; instead, the evolutionarily recent 'universal law' aspect of morality may function to update behavioral strategies which were adaptive in the paleolithic environment of our ancestors (to which our psychological dispositions are best adapted), by means of norms more appropriate to our novel social environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42482/1/10539_2004_Article_5102509.pd

    APOE ɛ4 exacerbates age-dependent deficits in cortical microstructure

    Get PDF
    The apolipoprotein E ɛ4 allele is the primary genetic risk factor for the sporadic type of Alzheimer’s disease. However, the mechanisms by which apolipoprotein E ɛ4 are associated with neurodegeneration are still poorly understood. We applied the Neurite Orientation Dispersion Model to characterize the effects of apolipoprotein ɛ4 and its interactions with age and education on cortical microstructure in cognitively normal individuals. Data from 1954 participants were included from the PREVENT-Dementia and ALFA (ALzheimer and FAmilies) studies (mean age = 57, 1197 non-carriers and 757 apolipoprotein E ɛ4 carriers). Structural MRI datasets were processed with FreeSurfer v7.2. The Microstructure Diffusion Toolbox was used to derive Orientation Dispersion Index maps from diffusion MRI datasets. Primary analyses were focused on (i) the main effects of apolipoprotein E ɛ4, and (ii) the interactions of apolipoprotein E ɛ4 with age and education on lobar and vertex-wise Orientation Dispersion Index and implemented using Permutation Analysis of Linear Models. There were apolipoprotein E ɛ4 × age interactions in the temporo-parietal and frontal lobes, indicating steeper age-dependent Orientation Dispersion Index changes in apolipoprotein E ɛ4 carriers. Steeper age-related Orientation Dispersion Index declines were observed among apolipoprotein E ɛ4 carriers with lower years of education. We demonstrated that apolipoprotein E ɛ4 worsened age-related Orientation Dispersion Index decreases in brain regions typically associated with atrophy patterns of Alzheimer’s disease. This finding also suggests that apolipoprotein E ɛ4 may hasten the onset age of dementia by accelerating age-dependent reductions in cortical Orientation Dispersion Index

    Livestock Costs and Returns From Farm Cost Accounts, 42 Farms 1965

    Full text link
    A.E. Res. 21

    Livestock Costs and Returns From Farm Cost Accounts, 32 Farms 1969

    Full text link
    A.E. Res. 32

    Overhead Costs From Farm Cost Accounts, 30 Farms, 1970

    Full text link
    A.E. Res. 34

    Livestock Costs and Returns From Farm Cost Accounts, 30 Farms 1970

    Full text link
    A.E. Res. 34

    Cash Crops and Fruits Costs and Returns From Farm Cost Accounts, 42 Farms, 1965

    Full text link
    A.E. Res. 21
    corecore