711 research outputs found

    Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases

    Full text link
    This study aims at the early diagnostics of geoeffectiveness of coronal mass ejections (CMEs) from quantitative parameters of the accompanying EUV dimming and arcade events. We study events of the 23th solar cycle, in which major non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently reliably identified with their solar sources in the central part of the disk. Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant dimming and arcade areas and calculate summarized unsigned magnetic fluxes in these regions at the photospheric level. The high relevance of this eruption parameter is displayed by its pronounced correlation with the Forbush decrease (FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz component but is determined by global characteristics of ICMEs. Correlations with the same magnetic flux in the solar source region are found for the GMS intensity (at the first step, without taking into account factors determining the Bz component near the Earth), as well as for the temporal intervals between the solar eruptions and the GMS onset and peak times. The larger the magnetic flux, the stronger the FD and GMS intensities are and the shorter the ICME transit time is. The revealed correlations indicate that the main quantitative characteristics of major non-recurrent space weather disturbances are largely determined by measurable parameters of solar eruptions, in particular, by the magnetic flux in dimming areas and arcades, and can be tentatively estimated in advance with a lead time from 1 to 4 days. For GMS intensity, the revealed dependencies allow one to estimate a possible value, which can be expected if the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic

    Using Heavy Quark Spin Symmetry in Semileptonic BcB_c Decays

    Get PDF
    The form factors parameterizing the B_c semileptonic matrix elements can be related to a few invariant functions if the decoupling of the spin of the heavy quarks in B_c and in the mesons produced in the semileptonic decays is exploited. We compute the form factors as overlap integral of the meson wave-functions obtained using a QCD relativistic potential model, and give predictions for semileptonic and non-leptonic B_c decay modes. We also discuss possible experimental tests of the heavy quark spin symmetry in B_c decays.Comment: RevTex, 22 pages, 2 figure

    Semileptonic and nonleptonic B decays to three charm quarks: B->J/psi (eta_c) D l nu and J/psi (eta_c) D pi

    Full text link
    We evaluate the form factors describing the semileptonic decays B0ˉJ/ψ(ηc)D+νˉ\bar{B^0}\to J/\psi (\eta_c) D^+ \ell^- \bar \nu_\ell, within the framework of a QCD relativistic potential model. This decay is complementary to B0ˉJ/ψ(ηc)D+π\bar{B^0}\to J/\psi (\eta_c) D^+ \pi^- in a phase space region where a pion factors out.We estimate the branching ratio for these semileptonic and nonleptonic channels, finding BR(B0ˉJ/ψ(ηc)D+ν)1013\mathcal{BR}(\bar{B^0} \to J/\psi (\eta_c) D^+ \ell \nu_\ell) \simeq 10^{-13}, BR(B0ˉJ/ψD+π)=3.1×108\mathcal{BR}(\bar{B^0} \to J/\psi D^+ \pi^-) = 3.1 \times 10^{-8} and BR(B0ˉηcD+π)=3.5×108\mathcal{BR}(\bar{B^0} \to \eta_c D^+ \pi^-) = 3.5 \times 10^{-8}.Comment: 14 pages, 4 figure

    Wave functions and decay constants of BB and DD mesons in the relativistic potential model

    Full text link
    With the decay constants of DD and DsD_s mesons measured in experiment recently, we revisit the study of the bound states of quark and antiquark in BB and DD mesons in the relativistic potential model. The relativistic bound state wave equation is solved numerically. The masses, decay constants and wave functions of BB and DD mesons are obtained. Both the masses and decay constants obtained here can be consistent with the experimental data. The wave functions can be used in the study of BB and DD meson decays.Comment: more discussion added, to appear in EPJ

    A 3-year plankton DNA metabarcoding survey reveals marine biodiversity patterns in Australian coastal waters

    Get PDF
    Aim: To use a long-term collection of bulk plankton samples to test the capacity of DNA metabarcoding to characterize the spatial and seasonal patterns found within a range of zooplankton communities, and investigate links with concurrent abiotic data collected as part of Australia's Integrated Marine Observing System (IMOS) programme. Location: Samples were sourced seasonally for 3 years from nine Pan-Australian marine sites (n = 90). Methods: Here, we apply a multi-assay metabarcoding approach to environmental DNA extracted from bulk plankton samples. Six assays (targeting 16SrRNA and COI genes) were used to target, amplify and sequence the zooplankton diversity found within each sample. The data generated from each assay were filtered and clustered into OTUs prior to analysis. Abiotic IMOS data collected contemporaneously enabled us to explore the physical and chemical drivers of community composition. Results: From over 25 million sequences, we identified in excess of 500 distinct taxa and detected clear spatial differences. We found that site and sea surface temperature are the most consistent predictors of differences between zooplankton communities. We detected endangered and invasive species such as the bryozoan Membranipora membranacea and the mollusc Maoricolpus roseus, and seasonal occurrences of species such as humpback whales (Megaptera novaeangliae). We also estimated the number of samples required to detect any significant seasonal changes. For OTU richness, this was found to be assay dependent and for OTU assemblage, a minimum of nine samples per season would be required. Main Conclusion: Our results demonstrate the ability of DNA to capture and map zooplankton community changes in response to seasonal and spatial stressors and provide vital evidence to environmental stakeholders. We confirm that a metabarcoding method offers a practical opportunity for an ecosystem-wide approach to long-term biomonitoring and understanding marine biomes where morphological analysis is not feasible

    Chimeric Investigations into the Diamide Binding Site on the Lepidopteran Ryanodine Receptor

    Get PDF
    Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human−Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
    corecore