711 research outputs found
Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases
This study aims at the early diagnostics of geoeffectiveness of coronal mass
ejections (CMEs) from quantitative parameters of the accompanying EUV dimming
and arcade events. We study events of the 23th solar cycle, in which major
non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently
reliably identified with their solar sources in the central part of the disk.
Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant
dimming and arcade areas and calculate summarized unsigned magnetic fluxes in
these regions at the photospheric level. The high relevance of this eruption
parameter is displayed by its pronounced correlation with the Forbush decrease
(FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz
component but is determined by global characteristics of ICMEs. Correlations
with the same magnetic flux in the solar source region are found for the GMS
intensity (at the first step, without taking into account factors determining
the Bz component near the Earth), as well as for the temporal intervals between
the solar eruptions and the GMS onset and peak times. The larger the magnetic
flux, the stronger the FD and GMS intensities are and the shorter the ICME
transit time is. The revealed correlations indicate that the main quantitative
characteristics of major non-recurrent space weather disturbances are largely
determined by measurable parameters of solar eruptions, in particular, by the
magnetic flux in dimming areas and arcades, and can be tentatively estimated in
advance with a lead time from 1 to 4 days. For GMS intensity, the revealed
dependencies allow one to estimate a possible value, which can be expected if
the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic
Using Heavy Quark Spin Symmetry in Semileptonic Decays
The form factors parameterizing the B_c semileptonic matrix elements can be
related to a few invariant functions if the decoupling of the spin of the heavy
quarks in B_c and in the mesons produced in the semileptonic decays is
exploited. We compute the form factors as overlap integral of the meson
wave-functions obtained using a QCD relativistic potential model, and give
predictions for semileptonic and non-leptonic B_c decay modes. We also discuss
possible experimental tests of the heavy quark spin symmetry in B_c decays.Comment: RevTex, 22 pages, 2 figure
Semileptonic and nonleptonic B decays to three charm quarks: B->J/psi (eta_c) D l nu and J/psi (eta_c) D pi
We evaluate the form factors describing the semileptonic decays , within the framework of a QCD
relativistic potential model. This decay is complementary to in a phase space region where a pion factors out.We
estimate the branching ratio for these semileptonic and nonleptonic channels,
finding ,
and .Comment: 14 pages, 4 figure
Wave functions and decay constants of and mesons in the relativistic potential model
With the decay constants of and mesons measured in experiment
recently, we revisit the study of the bound states of quark and antiquark in
and mesons in the relativistic potential model. The relativistic bound
state wave equation is solved numerically. The masses, decay constants and wave
functions of and mesons are obtained. Both the masses and decay
constants obtained here can be consistent with the experimental data. The wave
functions can be used in the study of and meson decays.Comment: more discussion added, to appear in EPJ
A 3-year plankton DNA metabarcoding survey reveals marine biodiversity patterns in Australian coastal waters
Aim: To use a long-term collection of bulk plankton samples to test the capacity of DNA metabarcoding to characterize the spatial and seasonal patterns found within a range of zooplankton communities, and investigate links with concurrent abiotic data collected as part of Australia's Integrated Marine Observing System (IMOS) programme. Location: Samples were sourced seasonally for 3 years from nine Pan-Australian marine sites (n = 90). Methods: Here, we apply a multi-assay metabarcoding approach to environmental DNA extracted from bulk plankton samples. Six assays (targeting 16SrRNA and COI genes) were used to target, amplify and sequence the zooplankton diversity found within each sample. The data generated from each assay were filtered and clustered into OTUs prior to analysis. Abiotic IMOS data collected contemporaneously enabled us to explore the physical and chemical drivers of community composition. Results: From over 25 million sequences, we identified in excess of 500 distinct taxa and detected clear spatial differences. We found that site and sea surface temperature are the most consistent predictors of differences between zooplankton communities. We detected endangered and invasive species such as the bryozoan Membranipora membranacea and the mollusc Maoricolpus roseus, and seasonal occurrences of species such as humpback whales (Megaptera novaeangliae). We also estimated the number of samples required to detect any significant seasonal changes. For OTU richness, this was found to be assay dependent and for OTU assemblage, a minimum of nine samples per season would be required. Main Conclusion: Our results demonstrate the ability of DNA to capture and map zooplankton community changes in response to seasonal and spatial stressors and provide vital evidence to environmental stakeholders. We confirm that a metabarcoding method offers a practical opportunity for an ecosystem-wide approach to long-term biomonitoring and understanding marine biomes where morphological analysis is not feasible
Chimeric Investigations into the Diamide Binding Site on the Lepidopteran Ryanodine Receptor
Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human−Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains
Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV
Peer reviewe
Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks
Peer reviewe
Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search
Peer reviewe
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
- …
