2,053 research outputs found
Fermi edge singularities in X-ray spectra of strongly correlated fermions
We discuss the problem of the X-ray absorption in a system of interacting
fermions and, in particular, those features in the X-ray spectra that can be
used to discriminate between conventional Fermi-liquids and novel "strange
metals". Focusing on the case of purely forward scattering off the core-hole
potential, we account for the relevant interactions in the conduction band by
means of the bosonization technique. We find that the X-ray Fermi edge
singularities can still be present, although modified, even if the density of
states vanishes at the Fermi energy, and that, in general, the relationship
between the two appears to be quite subtle.Comment: Latex, 16 pages, Princeton preprin
Phosphonopeptides Revisited, in an Era of Increasing Antimicrobial Resistance
Given the increase in resistance to antibacterial agents, there is an urgent need for the development of new agents with novel modes of action. As an interim solution, it is also prudent to reinvestigate old or abandoned antibacterial compounds to assess their efficacy in the context of widespread resistance to conventional agents. In the 1970s, much work was performed on the development of peptide mimetics, exemplified by the phosphonopeptide, alafosfalin. We investigated the activity of alafosfalin, di-alanyl fosfalin and β-chloro-L-alanyl-β-chloro-L-alanine against 297 bacterial isolates, including carbapenemase-producing Enterobacterales (CPE) (n = 128), methicillin-resistant Staphylococcus aureus (MRSA) (n = 37) and glycopeptide-resistant enterococci (GRE) (n = 43). The interaction of alafosfalin with meropenem was also examined against 20 isolates of CPE. The MIC50 and MIC90 of alafosfalin for CPE were 1 mg/L and 4 mg/L, respectively and alafosfalin acted synergistically when combined with meropenem against 16 of 20 isolates of CPE. Di-alanyl fosfalin showed potent activity against glycopeptide-resistant isolates of Enterococcus faecalis (MIC90; 0.5 mg/L) and Enterococcus faecium (MIC90; 2 mg/L). Alafosfalin was only moderately active against MRSA (MIC90; 8 mg/L), whereas β-chloro-L-alanyl-β-chloro-L-alanine was slightly more active (MIC90; 4 mg/L). This study shows that phosphonopeptides, including alafosfalin, may have a therapeutic role to play in an era of increasing antibacterial resistance
quantum Heisenberg antiferromagnet on the triangular lattice: a group symmetry analysis of order by disorder
On the triangular lattice, for between and , the classical
Heisenberg model with first and second neighbor interactions presents
four-sublattice ordered ground-states. Spin-wave calculations of Chubukov and
Jolicoeur\cite{cj92} and Korshunov\cite{k93} suggest that quantum fluctuations
select amongst these states a colinear two-sublattice order. From theoretical
requirements, we develop the full symmetry analysis of the low lying levels of
the spin-1/2 Hamiltonian in the hypotheses of either a four or a two-sublattice
order. We show on the exact spectra of periodic samples ( and )
how quantum fluctuations select the colinear order from the four-sublattice
order.Comment: 15 pages, 4 figures (available upon request), Revte
Exact perturbative solution of the Kondo problem
We explicitly evaluate the infinite series of integrals that appears in the
"Anderson-Yuval" reformulation of the anisotropic Kondo problem in terms of a
one-dimensional Coulomb gas. We do this by developing a general approach
relating the anisotropic Kondo problem of arbitrary spin with the boundary
sine-Gordon model, which describes impurity tunneling in a Luttinger liquid and
in the fractional quantum Hall effect. The Kondo solution then follows from the
exact perturbative solution of the latter model in terms of Jack polynomials.Comment: 4 pages in revtex two-colum
Critical exponents of a multicomponent anisotropic t-J model in one dimension
A recently presented anisotropic generalization of the multicomponent
supersymmetric model in one dimension is investigated. This model of
fermions with general spin- is solved by Bethe ansatz for the ground state
and the low-lying excitations. Due to the anisotropy of the interaction the
model possesses massive modes and one single gapless excitation. The
physical properties indicate the existence of Cooper-type multiplets of
fermions with finite binding energy. The critical behaviour is described by a
conformal field theory with continuously varying exponents depending on
the particle density. There are two distinct regimes of the phase diagram with
dominating density-density and multiplet-multiplet correlations, respectively.
The effective mass of the charge carriers is calculated. In comparison to the
limit of isotropic interactions the mass is strongly enhanced in general.Comment: 10 pages, 3 Postscript figures appended as uuencoded compressed
tar-file to appear in Z. Phys. B, preprint Cologne-94-474
Chasing the identification of ASCA Galactic Objects (ChIcAGO): An X-ray survey of unidentified sources in the galactic plane. I : Source sample and initial results
We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the Fx 10-13 to 10-11 erg cm -2 s-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multiwavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3′ of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the Fx 10-13 to 10-11 erg cm -2 s-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding wind binaries, X-ray binaries, and magnetars. There is also another primary population that is still unidentified but, on the basis of its X-ray and infrared properties, likely comprises partly Galactic sources and partly active galactic nuclei.Peer reviewedSubmitted Versio
Convergence of vector bundles with metrics of Sasaki-type
If a sequence of Riemannian manifolds, , converges in the pointed
Gromov-Hausdorff sense to a limit space, , and if are vector
bundles over endowed with metrics of Sasaki-type with a uniform upper
bound on rank, then a subsequence of the converges in the pointed
Gromov-Hausdorff sense to a metric space, . The projection maps
converge to a limit submetry and the fibers converge to
its fibers; the latter may no longer be vector spaces but are homeomorphic to
, where is a closed subgroup of ---called the {\em wane
group}--- that depends on the basepoint and that is defined using the holonomy
groups on the vector bundles. The norms converges to a map
compatible with the re-scaling in and the -action
on converges to an action on compatible with the
limiting norm.
In the special case when the sequence of vector bundles has a uniform lower
bound on holonomy radius (as in a sequence of collapsing flat tori to a
circle), the limit fibers are vector spaces. Under the opposite extreme, e.g.
when a single compact -dimensional manifold is re-scaled to a point, the
limit fiber is where is the closure of the holonomy group of the
compact manifold considered.
An appropriate notion of parallelism is given to the limiting spaces by
considering curves whose length is unchanged under the projection. The class of
such curves is invariant under the -action and each such curve preserves
norms. The existence of parallel translation along rectifiable curves with
arbitrary initial conditions is also exhibited. Uniqueness is not true in
general, but a necessary condition is given in terms of the aforementioned wane
groups .Comment: 44 pages, 1 figure, in V.2 added Theorem E and Section 4 on
parallelism in the limit space
Low energy and dynamical properties of a single hole in the t-Jz model
We review in details a recently proposed technique to extract information
about dynamical correlation functions of many-body hamiltonians with a few
Lanczos iterations and without the limitation of finite size. We apply this
technique to understand the low energy properties and the dynamical spectral
weight of a simple model describing the motion of a single hole in a quantum
antiferromagnet: the model in two spatial dimension and for a double
chain lattice. The simplicity of the model allows us a well controlled
numerical solution, especially for the two chain case. Contrary to previous
approximations we have found that the single hole ground state in the infinite
system is continuously connected with the Nagaoka fully polarized state for
. Analogously we have obtained an accurate determination of the
dynamical spectral weight relevant for photoemission experiments. For
an argument is given that the spectral weight vanishes at the Nagaoka energy
faster than any power law, as supported also by a clear numerical evidence. It
is also shown that spin charge decoupling is an exact property for a single
hole in the Bethe lattice but does not apply to the more realistic lattices
where the hole can describe closed loop paths.Comment: RevTex 3.0, 40 pages + 16 Figures in one file self-extracting, to
appear in Phys. Rev
Together, yet still not equal? Sex integration in equestrian sport
Sex segregation is a core organising principle of most modern sports and is a key element in the marginalisation and subordination of girls and women in sport and beyond. In this article I explore the only Olympic-level sport which is not organised around sex segregation – equestrian sport – in order to consider the implications of sex integration for female participants. I draw on a study conducted on elite riders that found that although sex integration in equestrian sport does not lead to female participants being excluded from high-level competition, men continue to perform disproportionately well. This suggests that although sex integration may be an important step towards breaking down gender hierarchies in sport, without accompanying wider changes in gender norms and expectations, sex integration alone will not be enough to achieve greater gender equality in equestrian sport
Pyrochlore Photons: The U(1) Spin Liquid in a S=1/2 Three-Dimensional Frustrated Magnet
We study the S=1/2 Heisenberg antiferromagnet on the pyrochlore lattice in
the limit of strong easy-axis exchange anisotropy. We find, using only standard
techniques of degenerate perturbation theory, that the model has a U(1) gauge
symmetry generated by certain local rotations about the z-axis in spin space.
Upon addition of an extra local interaction in this and a related model with
spins on a three-dimensional network of corner-sharing octahedra, we can write
down the exact ground state wavefunction with no further approximations. Using
the properties of the soluble point we show that these models enter the U(1)
spin liquid phase, a novel fractionalized spin liquid with an emergent U(1)
gauge structure. This phase supports gapped S^z = 1/2 spinons carrying the U(1)
``electric'' gauge charge, a gapped topological point defect or ``magnetic''
monopole, and a gapless ``photon,'' which in spin language is a gapless,
linearly dispersing S^z = 0 collective mode. There are power-law spin
correlations with a nontrivial angular dependence, as well as novel U(1)
topological order. This state is stable to ALL zero-temperature perturbations
and exists over a finite extent of the phase diagram. Using a convenient
lattice version of electric-magnetic duality, we develop the effective
description of the U(1) spin liquid and the adjacent soluble point in terms of
Gaussian quantum electrodynamics and calculate a few of the universal
properties. The resulting picture is confirmed by our numerical analysis of the
soluble point wavefunction. Finally, we briefly discuss the prospects for
understanding this physics in a wider range of models and for making contact
with experiments.Comment: 22 pages, 14 figures. Further minor changes. To appear in Phys. Rev.
- …
