1,555 research outputs found
Radio Source Heating in the ICM: The Example of Cygnus A
One of the most promising solutions for the cooling flow problem involves
energy injection from the central AGN. However it is still not clear how
collimated jets can heat the ICM at large scale, and very little is known
concerning the effect of radio lobe expansion as they enter into pressure
equilibrium with the surrounding cluster gas. Cygnus A is one of the best
examples of a nearby powerful radio galaxy for which the synchrotron emitting
plasma and thermal emitting intra-cluster medium can be mapped in fine detail,
and previous observations have inferred possible shock structure at the
location of the cocoon. We use new XMM-Newton observations of Cygnus A, in
combination with deep Chandra observations, to measure the temperature of the
intra-cluster medium around the expanding radio cavities. We investigate how
inflation of the cavities may relate to shock heating of the intra-cluster gas,
and whether such a mechanism is sufficient to provide enough energy to offset
cooling to the extent observed.Comment: To appear in the Proceedings of "Heating vs. Cooling in Galaxies and
Clusters of Galaxies", August 2006, Garching (Germany), Eds. H. Boehringer,
G.W. Pratt, A. Finoguenov, P. Schuecker, Springer-Verlag series "ESO
Astrophysics Symposia", p.101, in press. 8 pages, 3 multiple figure
The Kagome Antiferromagnet with Defects: Satisfaction, Frustration, and Spin Folding in a Random Spin System
It is shown that site disorder induces noncoplanar states, competing with the
thermal selection of coplanar states, in the nearest neighbor, classical kagome
Heisenberg antiferromagnet (AFM). For weak disorder, it is found that the
ground state energy is the sum of energies of separately satisfied triangles of
spins. This implies that disorder does not induce conventional spin glass
behavior. A transformation is presented, mapping ground state spin
configurations onto a folded triangular sheet (a new kind of ``spin origami'')
which has conformations similar to those of tethered membranes.Comment: REVTEX, 11 pages + 3 pictures upon reques
Classical heisenberg antiferromagnet away from the pyrochlore lattice limit: entropic versus energetic selection
The stability of the disordered ground state of the classical Heisenberg
pyrochlore antiferromagnet is studied within extensive Monte Carlo simulations
by introducing an additional exchange interaction that interpolates
between the pyrochlore lattice () and the face-centered cubic lattice
(). It is found that for as low as , the system is
long range ordered : the disordered ground state of the pyrochlore
antiferromagnet is unstable when introducing very small deviations from the
pure limit. Furthermore, it is found that the selected phase is a
collinear state energetically greater than the incommensurate phase suggested
by a mean field analysis. To our knowledge this is the first example where
entropic selection prevails over the energetic one.Comment: 5 (two-column revtex4) pages, 1 table, 7 ps/eps figures. Submitted to
Phys. Rev.
On the magnetic stability at the surface in strongly correlated electron systems
The stability of ferromagnetism at the surface at finite temperatures is
investigated within the strongly correlated Hubbard model on a semi-infinite
lattice. Due to the reduced surface coordination number the effective Coulomb
correlation is enhanced at the surface compared to the bulk. Therefore, within
the well-known Stoner-picture of band ferromagnetism one would expect the
magnetic stability at the surface to be enhanced as well. However, by taking
electron correlations into account well beyond the Hartree-Fock (Stoner) level
we find the opposite behavior: As a function of temperature the magnetization
of the surface layer decreases faster than in the bulk. By varying the hopping
integral within the surface layer this behavior becomes even more pronounced. A
reduced hopping integral at the surface tends to destabilize surface
ferromagnetism whereas the magnetic stability gets enhanced by an increased
hopping integral. This behavior represents a pure correlation effect and can be
understood in terms of general arguments which are based on exact results in
the limit of strong Coulomb interaction.Comment: 6 pages, RevTeX, 4 eps figures, accepted (Phys. Rev. B), for related
work and info see http://orion.physik.hu-berlin.d
An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase
Nitric oxide synthases (NOSs) are classified functionally, based on whether calmodulin binding is Ca2+-dependent (cNOS) or Ca2+-independent (iNOS). This key dichotomy has not been defined at the molecular level. Here we show that cNOS isoforms contain a unique polypeptide insert in their FMN binding domains which is not shared with iNOS or other related flavoproteins. Previously identified autoinhibitory domains in calmodulin-regulated enzymes raise the possibility that the polypeptide insert is the autoinhibitory domain of cNOSs. Consistent with this possibility, three-dimensional molecular modeling suggested that the insert originates from a site immediately adjacent to the calmodulin binding sequence. Synthetic peptides derived from the 45-amino acid insert of endothelial NOS were found to potently inhibit binding of calmodulin and activation of cNOS isoforms. This inhibition was associated with peptide binding to NOS, rather than free calmodulin, and inhibition could be reversed by increasing calmodulin concentration. In contrast, insert-derived peptides did not interfere with the arginine site of cNOS, as assessed from [3H]NG-nitro-L-arginine binding, nor did they potently effect iNOS activity. Limited proteolysis studies showed that calmodulin's ability to gate electron flow through cNOSs is associated with displacement of the insert polypeptide; this is the first specific calmodulin-induced change in NOS conformation to be identified. Together, our findings strongly suggest that the insert is an autoinhibitory control element, docking with a site on cNOSs which impedes calmodulin binding and enzymatic activation. The autoinhibitory control element molecularly defines cNOSs and offers a unique target for developing novel NOS activators and inhibitors
Staggered flux and stripes in doped antiferromagnets
We have numerically investigated whether or not a mean-field theory of spin
textures generate fictitious flux in the doped two dimensional -model.
First we consider the properties of uniform systems and then we extend the
investigation to include models of striped phases where a fictitious flux is
generated in the domain wall providing a possible source for lowering the
kinetic energy of the holes. We have compared the energetics of uniform systems
with stripes directed along the (10)- and (11)-directions of the lattice,
finding that phase-separation generically turns out to be energetically
favorable. In addition to the numerical calculations, we present topological
arguments relating flux and staggered flux to geometric properties of the spin
texture. The calculation is based on a projection of the electron operators of
the model into a spin texture with spinless fermions.Comment: RevTex, 19 pages including 20 figure
The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance
We investigated the effect of beta-alanine (BA) alone (study A) and in combination with sodium bicarbonate (SB) (study B) on 100- and 200-m swimming performance. In study A, 16 swimmers were assigned to receive either BA (3.2 g·day−1 for 1 week and 6.4 g·day−1 for 4 weeks) or placebo (PL; dextrose). At baseline and after 5 weeks of supplementation, 100- and 200-m races were completed. In study B, 14 were assigned to receive either BA (3.2 g·day−1 for 1 week and 6.4 g·day−1 for 3 weeks) or PL. Time trials were performed once before and twice after supplementation (with PL and SB), in a crossover fashion, providing 4 conditions: PL-PL, PL-SB, BA-PL, and BA-SB. In study A, BA supplementation improved 100- and 200-m time-trial performance by 2.1% (p = 0.029) and 2.0% (p = 0.0008), respectively. In study B, 200-m time-trial performance improved in all conditions, compared with presupplementation, except the PL-PL condition (PL-SB, +2.3%; BA-PL, +1.5%; BA-SB, +2.13% (p < 0.05)). BA-SB was not different from BA-PL (p = 0.21), but the probability of a positive effect was 78.5%. In the 100-m time-trial, only a within-group effect for SB was observed in the PL-SB (p = 0.022) and BA-SB (p = 0.051) conditions. However, 6 of 7 athletes swam faster after BA supplementation. The probability of BA having a positive effect was 65.2%; when SB was added to BA, the probability was 71.8%. BA and SB supplementation improved 100- and 200-m swimming performance. The coingestion of BA and SB induced a further nonsignificant improvement in performance
Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice
At zero temperature magnetic phases of the quantum spin-1/2 Heisenberg
antiferromagnet on a simple cubic lattice with competing first and second
neighbor exchanges (J1 and J2) is investigated using the non-linear spin wave
theory. We find existence of two phases: a two sublattice Neel phase for small
J2 (AF), and a collinear antiferromagnetic phase at large J2 (CAF). We obtain
the sublattice magnetizations and ground state energies for the two phases and
find that there exists a first order phase transition from the AF-phase to the
CAF-phase at the critical transition point, pc = 0.28. Our results for the
value of pc are in excellent agreement with results from Monte-Carlo
simulations and variational spin wave theory. We also show that the quartic 1/S
corrections due spin-wave interactions enhance the sublattice magnetization in
both the phases which causes the intermediate paramagnetic phase predicted from
linear spin wave theory to disappear.Comment: 19 pages, 4 figures, Fig. 1b modified, Appendix B text modifie
Bond order from disorder in the planar pyrochlore magnet
We study magnetic order in the Heisenberg antiferromagnet on the checkerboard
lattice, a two-dimensional version of the pyrochlore network with strong
geometric frustration. By employing the semiclassical (1/S) expansion we find
that quantum fluctuations of spins induce a long-range order that breaks the
four-fold rotational symmetry of the lattice. The ordered phase is a
valence-bond crystal. We discuss similarities and differences with the extreme
quantum case S = 1/2 and find a useful phenomenology to describe the
bond-ordered phases.Comment: Minor clarifications + reference to an informal introduction
cond-mat/030809
Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion
We describe the results of a parametric down-conversion experiment in which
the detection of one photon of a pair causes the other photon to be switched
into a storage loop. The stored photon can then be switched out of the loop at
a later time chosen by the user, providing a single photon for potential use in
a variety of quantum information processing applications. Although the stored
single photon is only available at periodic time intervals, those times can be
chosen to match the cycle time of a quantum computer by using pulsed
down-conversion. The potential use of the storage loop as a photonic quantum
memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe
- …
