1,725 research outputs found

    Use of scenario evaluation in preparation for deployment of a collaborative system for knowledge transfer - the case of KiMERA

    Get PDF
    This paper presented an approach for the evaluation of a collaborative system, after the completion of system development and software testing but before its deployment. Scenario and collaborative episodes were designed and data collected from users role-playing. This was found to be a useful step in refining the user training, in setting the right level of user expectation when the system started to roll-out to real users and in providing feedback to the development team

    From E_8 to F via T

    Full text link
    We argue that T-duality and F-theory appear automatically in the E_8 gauge bundle perspective of M-theory. The 11-dimensional supergravity four-form determines an E_8 bundle. If we compactify on a two-torus, this data specifies an LLE_8 bundle where LG is a centrally-extended loopgroup of G. If one of the circles of the torus is smaller than sqrt(alpha') then it is also smaller than a nontrivial circle S in the LLE_8 fiber and so a dimensional reduction on the total space of the bundle is not valid. We conjecture that S is the circle on which the T-dual type IIB theory is compactified, with the aforementioned torus playing the role of the F-theory torus. As tests we reproduce the T-dualities between NS5-branes and KK-monopoles, as well as D6 and D7-branes where we find the desired F-theory monodromy. Using Hull's proposal for massive IIA, this realization of T-duality allows us to confirm that the Romans mass is the central extension of our LE_8. In addition this construction immediately reproduces the conjectured formula for global topology change from T-duality with H-flux.Comment: 25 pages, 4 eps figure

    Nonlinear atom optics and bright gap soliton generation in finite optical lattices

    Full text link
    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture for the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due the atom-atom interaction are discussed in detail, such as atom optical limiting and atom optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A new scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded in a controlled way starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

    Twisted K-Theory from Monodromies

    Get PDF
    RR fluxes representing different cohomology classes may correspond to the same twisted K-theory class. We argue that such fluxes are related by monodromies, generalizing and sometimes T-dual to the familiar monodromies of a D7-brane. A generalized theta angle is also transformed, but changes by a multiple of 2pi. As an application, NS5-brane monodromies modify the twisted K-theory classification of fluxes. Furthermore, in the noncompact case K-theory does not distinguish flux configurations in which dG is nontrivial in compactly supported cohomology. Such fluxes are realized as the decay products of unstable D-branes that wrapped nontrivial cycles. This is interpreted using the E8 bundle formalism.Comment: 24 Pages, 6 eps figure

    Forbidden Landscape from Holography

    Full text link
    We present a class of field configurations that are forbidden in the quantum gravity because of inconsistency in the dual field theory from holography. Scale invariant but non-conformal field theories are impossible in (1+1) dimension, and so should be the corresponding gravity dual. In particular, the "spontaneous Lorentz symmetry breaking" models and the "ghost condensation" models, which are well-studied in phenomenology literatures, are forbidden in any consistent quantum theories of gravity in (1+2) dimension since they predict such inconsistent field configurations.Comment: 4pages, v2: some improvements, reference adde

    Loop Groups, Kaluza-Klein Reduction and M-Theory

    Full text link
    We show that the data of a principal G-bundle over a principal circle bundle is equivalent to that of a \hat{LG} = U(1) |x LG bundle over the base of the circle bundle. We apply this to the Kaluza-Klein reduction of M-theory to IIA and show that certain generalized characteristic classes of the loop group bundle encode the Bianchi identities of the antisymmetric tensor fields of IIA supergravity. We further show that the low dimensional characteristic classes of the central extension of the loop group encode the Bianchi identities of massive IIA, thereby adding support to the conjectures of hep-th/0203218.Comment: 26 pages, LaTeX, utarticle.cls, v2:clarifications and refs adde

    Generalized Flux Vacua

    Get PDF
    We consider type II string theory compactified on a symmetric T^6/Z_2 orientifold. We study a general class of discrete deformations of the resulting four-dimensional supergravity theory, including gaugings arising from geometric and "nongeometric'' fluxes, as well as the usual R-R and NS-NS fluxes. Solving the equations of motion associated with the resulting N = 1 superpotential, we find parametrically controllable infinite families of supersymmetric vacua with all moduli stabilized. We also describe some aspects of the distribution of generic solutions to the SUSY equations of motion for this model, and note in particular the existence of an apparently infinite number of solutions in a finite range of the parameter space of the four-dimensional effective theory.Comment: 30 pages, 4 .eps figures; v2, reference adde

    Neither internal nor external nasal dilation improves cycling 20-km time trial performance

    Get PDF
    Objectives: Research is equivocal regarding endurance performance benefits of external nasal dilators, and currently research focusing on internal nasal dilators is non-existent. Both devices are used within competitive cycling. This study examined the influence of external and internal nasal dilation on cycling economy of motion and 20-km time trial performance. Design: The study utilized a randomized, counterbalanced cross-over design. Methods: Fifteen trained cyclists completed three exercise sessions consisting of a 15min standardized warm up and 20-km cycling time trial while wearing either a Breathe Right® external nasal dilator, Turbine® internal nasal dilator or no device (control). During the warm up, heart rate, ratings of perceived exertion and dyspnea and expired gases were collected. During the time trial, heart rate, perceived exertion, and dyspnea were collected at 4-km intervals and mean 20-km power output was recorded. Results: No differences were observed for mean 20-km power output between the internal (270. ±. 45. W) or external dilator (271. ±. 44. W) and control (272. ±. 44. W). No differences in the economy of motion were observed throughout the 15-min warm up between conditions. Conclusions: The Turbine® and Breathe Right® nasal dilators are ineffective at enhancing 20-km cycling time trial performance
    corecore