1,047 research outputs found
Automatic structures for semigroup constructions
We survey results concerning automatic structures for semigroup
constructions, providing references and describing the corresponding automatic
structures. The constructions we consider are: free products, direct products,
Rees matrix semigroups, Bruck-Reilly extensions and wreath products.Comment: 22 page
Teleparallel Versions of Friedmann and Lewis-Papapetrou Spacetimes
This paper is devoted to investigate the teleparallel versions of the
Friedmann models as well as the Lewis-Papapetrou solution. We obtain the tetrad
and the torsion fields for both the spacetimes. It is shown that the
axial-vector vanishes for the Friedmann models. We discuss the different
possibilities of the axial-vector depending on the arbitrary functions
and in the Lewis-Papapetrou metric. The vector related with spin has
also been evaluated.Comment: 13 pages, accepted for publication in GR
Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method
The Hamilton-Jacobi analysis is applied to the dynamics of the scalar
fluctuations about the Friedmann-Robertson-Walker (FRW). The gauge conditions
are found from the consistency conditions. The physical degrees of freedom of
the model are obtain by symplectic projector method. The role of the linearly
dependent Hamiltonians and the gauge variables in Hamilton-Jacobi formalism is
discussed.Comment: 11 page
The quadratic spinor Lagrangian is equivalent to the teleparallel theory
The quadratic spinor Lagrangian is shown to be equivalent to the teleparallel
/ tetrad representation of Einstein's theory. An important consequence is that
the energy-momentum density obtained from this quadratic spinor Lagrangian is
essentially the same as the ``tensor'' proposed by Moller in 1961.Comment: 10 pages, RevTe
A comparison between different propagative schemes for the simulation of tapered step index slab waveguides
The performance and accuracy of a number of propagative algorithms are compared for the simulation of tapered high contrast step index slab waveguides. The considered methods include paraxial as well as nonparaxial formulations of optical field propagation. In particular attention is paid to the validity of the paraxial approximation. To test the internal consistency of the various methods the property of reciprocity is verified and it is shown that for the paraxial algorithms the reciprocity can only be fulfilled if the paraxial approximation of the power flux expression using the Poynting vector is considered. Finally, modeling results are compared with measured fiber coupling losses for an experimentally realized taper structure
Research of Gravitation in Flat Minkowski Space
In this paper it is introduced and studied an alternative theory of
gravitation in flat Minkowski space. Using an antisymmetric tensor, which is
analogous to the tensor of electromagnetic field, a non-linear connection is
introduced. It is very convenient for studying the perihelion/periastron shift,
deflection of the light rays near the Sun and the frame dragging together with
geodetic precession, i.e. effects where angles are involved. Although the
corresponding results are obtained in rather different way, they are the same
as in the General Relativity. The results about the barycenter of two bodies
are also the same as in the General Relativity. Comparing the derived equations
of motion for the -body problem with the Einstein-Infeld-Hoffmann equations,
it is found that they differ from the EIH equations by Lorentz invariant terms
of order .Comment: 28 page
Circular orbits of corotating binary black holes: comparison between analytical and numerical results
We compare recent numerical results, obtained within a ``helical Killing
vector'' (HKV) approach, on circular orbits of corotating binary black holes to
the analytical predictions made by the effective one body (EOB) method (which
has been recently extended to the case of spinning bodies). On the scale of the
differences between the results obtained by different numerical methods, we
find good agreement between numerical data and analytical predictions for
several invariant functions describing the dynamical properties of circular
orbits. This agreement is robust against the post-Newtonian accuracy used for
the analytical estimates, as well as under choices of resummation method for
the EOB ``effective potential'', and gets better as one uses a higher
post-Newtonian accuracy. These findings open the way to a significant
``merging'' of analytical and numerical methods, i.e. to matching an EOB-based
analytical description of the (early and late) inspiral, up to the beginning of
the plunge, to a numerical description of the plunge and merger. We illustrate
also the ``flexibility'' of the EOB approach, i.e. the possibility of
determining some ``best fit'' values for the analytical parameters by
comparison with numerical data.Comment: Minor revisions, accepted for publication in Phys. Rev. D, 19 pages,
6 figure
Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order
An equation of motion for relativistic compact binaries is derived through
the third post-Newtonian (3 PN) approximation of general relativity. The strong
field point particle limit and multipole expansion of the stars are used to
solve iteratively the harmonically relaxed Einstein equations. We take into
account the Lorentz contraction on the multipole moments defined in our
previous works. We then derive a 3 PN acceleration of the binary orbital motion
of the two spherical compact stars based on a surface integral approach which
is a direct consequence of local energy momentum conservation. Our resulting
equation of motion admits a conserved energy (neglecting the 2.5 PN radiation
reaction effect), is Lorentz invariant and is unambiguous: there exist no
undetermined parameter reported in the previous works. We shall show that our 3
PN equation of motion agrees physically with the Blanchet and Faye 3 PN
equation of motion if , where is the parameter
which is undetermined within their framework. This value of is
consistent with the result of Damour, Jaranowski, and Sch\"afer who first
completed a 3 PN iteration of the ADM Hamiltonian in the ADMTT gauge using the
dimensional regularization.Comment: 52 pages, no figure, Appendices B and D added. Phys. Rev. D in pres
The Structure and Dynamics of the Upper Chromosphere and Lower Transition Region as Revealed by the Subarcsecond VAULT Observations
The Very high Angular resolution ULtraviolet Telescope (VAULT) is a sounding
rocket payload built to study the crucial interface between the solar
chromosphere and the corona by observing the strongest line in the solar
spectrum, the Ly-a line at 1216 {\AA}. In two flights, VAULT succeeded in
obtaining the first ever sub-arcsecond (0.5") images of this region with high
sensitivity and cadence. Detailed analyses of those observations have
contributed significantly to new ideas about the nature of the transition
region. Here, we present a broad overview of the Ly-a atmosphere as revealed by
the VAULT observations, and bring together past results and new analyses from
the second VAULT flight to create a synthesis of our current knowledge of the
high-resolution Ly-a Sun. We hope that this work will serve as a good reference
for the design of upcoming Ly-a telescopes and observing plans.Comment: 28 pages, 11 figure
Spin transport of electrons through quantum wires with spatially-modulated strength of the Rashba spin-orbit interaction
We study ballistic transport of spin-polarized electrons through quantum
wires in which the strength of the Rashba spin-orbit interaction (SOI) is
spatially modulated. Subband mixing, due to SOI, between the two lowest
subbands is taken into account. Simplified approximate expressions for the
transmission are obtained for electron energies close to the bottom of the
first subband and near the value for which anticrossing of the two lowest
subbands occurs. In structures with periodically varied SOI strength, {\it
square-wave} modulation on the spin transmission is found when only one subband
is occupied and its possible application to the spin transistor is discussed.
When two subbands are occupied the transmission is strongly affected by the
existence of SOI interfaces as well as by the subband mixing
- …
