1,200 research outputs found
Photometric compliance of tablet screens and retro-illuminated acuity charts as visual acuity measurement devices
Mobile technology is increasingly used to measure visual acuity. Standards for chart-based acuity tests specify photometric requirements for luminance, optotype contrast and luminance uniformity. Manufacturers provide some photometric data but little is known about tablet performance for visual acuity testing. This study photometrically characterised seven tablet computers (iPad, Apple inc.) and three ETDRS (Early Treatment Diabetic Retinopathy Study) visual acuity charts with room lights on and off, and compared findings with visual acuity measurement standards. Tablet screen luminance and contrast were measured using nine points across a black and white checkerboard test screen at five arbitrary brightness levels. ETDRS optotypes and adjacent white background luminance and contrast were measured. All seven tablets (room lights off) exceeded the most stringent requirement for mean luminance (≥ 120 cd/m2) providing the nominal brightness setting was above 50%. All exceeded contrast requirement (Weber ≥ 90%) regardless of brightness setting, and five were marginally below the required luminance uniformity threshold (Lmin/Lmax ≥ 80%). Re-assessing three tablets with room lights on made little difference to mean luminance or contrast, and improved luminance uniformity to exceed the threshold. The three EDTRS charts (room lights off) had adequate mean luminance (≥ 120 cd/m2) and Weber contrast (≥ 90%), but all three charts failed to meet the luminance uniformity standard (Lmin/Lmax ≥ 80%). Two charts were operating beyond manufacturer’s recommended lamp replacement schedule. With room lights on, chart mean luminance and Weber contrast increased, but two charts still had inadequate luminance uniformity. Tablet computers showed less inter-device variability, higher contrast, and better luminance uniformity than charts in both lights-on and lights-off environments, providing brightness setting was >50%. Overall, iPad tablets matched or marginally out-performed ETDRS charts in terms of photometric compliance with high contrast acuity standards
Hidden symmetry of hyperbolic monopole motion
Hyperbolic monopole motion is studied for well separated monopoles. It is
shown that the motion of a hyperbolic monopole in the presence of one or more
fixed monopoles is equivalent to geodesic motion on a particular submanifold of
the full moduli space. The metric on this submanifold is found to be a
generalisation of the multi-centre Taub-NUT metric introduced by LeBrun. The
one centre case is analysed in detail as a special case of a class of systems
admitting a conserved Runge-Lenz vector. The two centre problem is also
considered. An integrable classical string motion is exhibited.Comment: 39 pages, 7 figures, references added, minor changes to section
Light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei
The coalescence model based on nucleon distribution functions from an
isospin-dependent transport model is used to study the production of light
clusters such as deuteron, triton, and He from heavy-ion collisions
induced by neutron-rich nuclei at intermediate energies. It is found that the
emission time of light clusters depends on their masses. For clusters with the
same momentum per nucleon, heavier ones are emitted earlier. Both the yield and
energy spectrum of light clusters are sensitive to the density dependence of
nuclear symmetry energy, with more light clusters produced in the case of a
stiff symmetry energy. On the other hand, effects due to the stiffness of the
isoscalar part of nuclear equation of state and the medium dependence of
nucleon-nucleon cross sections on light cluster production are unimportant. We
have also studied the correlation functions of clusters, and they are affected
by the density dependence of nuclear symmetry energy as well, with the stiff
symmetry energy giving a stronger anti-correlation of light clusters,
particularly for those with large kinetic energies. Dependence of light cluster
production on the centrality and incident energy of heavy ion collisions as
well as the mass of the reaction system is also investigated.Comment: Revised version, typos corrected and discussions added, 14 pages, 15
figures, 1 table, REVTeX4.
An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ
Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow
Red Queen Coevolution on Fitness Landscapes
Species do not merely evolve, they also coevolve with other organisms.
Coevolution is a major force driving interacting species to continuously evolve
ex- ploring their fitness landscapes. Coevolution involves the coupling of
species fit- ness landscapes, linking species genetic changes with their
inter-specific ecological interactions. Here we first introduce the Red Queen
hypothesis of evolution com- menting on some theoretical aspects and empirical
evidences. As an introduction to the fitness landscape concept, we review key
issues on evolution on simple and rugged fitness landscapes. Then we present
key modeling examples of coevolution on different fitness landscapes at
different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and
Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.).
Springer Series in Emergence, Complexity, and Computation, 201
Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold
We consider the asymptotic behaviour of positive solutions of the
fast diffusion equation
posed for x\in\RR^d, , with a precise value for the exponent
. The space dimension is so that , and even
for . This case had been left open in the general study \cite{BBDGV} since
it requires quite different functional analytic methods, due in particular to
the absence of a spectral gap for the operator generating the linearized
evolution.
The linearization of this flow is interpreted here as the heat flow of the
Laplace-Beltrami operator of a suitable Riemannian Manifold (\RR^d,{\bf g}),
with a metric which is conformal to the standard \RR^d metric.
Studying the pointwise heat kernel behaviour allows to prove {suitable
Gagliardo-Nirenberg} inequalities associated to the generator. Such
inequalities in turn allow to study the nonlinear evolution as well, and to
determine its asymptotics, which is identical to the one satisfied by the
linearization. In terms of the rescaled representation, which is a nonlinear
Fokker--Planck equation, the convergence rate turns out to be polynomial in
time. This result is in contrast with the known exponential decay of such
representation for all other values of .Comment: 37 page
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
Singular Fermi Liquids
An introductory survey of the theoretical ideas and calculations and the
experimental results which depart from Landau Fermi-liquids is presented.
Common themes and possible routes to the singularities leading to the breakdown
of Landau Fermi liquids are categorized following an elementary discussion of
the theory. Soluble examples of Singular Fermi liquids (often called Non-Fermi
liquids) include models of impurities in metals with special symmetries and
one-dimensional interacting fermions. A review of these is followed by a
discussion of Singular Fermi liquids in a wide variety of experimental
situations and theoretical models. These include the effects of low-energy
collective fluctuations, gauge fields due either to symmetries in the
hamiltonian or possible dynamically generated symmetries, fluctuations around
quantum critical points, the normal state of high temperature superconductors
and the two-dimensional metallic state. For the last three systems, the
principal experimental results are summarized and the outstanding theoretical
issues highlighted.Comment: 170 pages; submitted to Physics Reports; a single pdf file with high
quality figures is available from http://www.lorentz.leidenuniv.nl/~saarloo
Dark Energy and Gravity
I review the problem of dark energy focusing on the cosmological constant as
the candidate and discuss its implications for the nature of gravity. Part 1
briefly overviews the currently popular `concordance cosmology' and summarises
the evidence for dark energy. It also provides the observational and
theoretical arguments in favour of the cosmological constant as the candidate
and emphasises why no other approach really solves the conceptual problems
usually attributed to the cosmological constant. Part 2 describes some of the
approaches to understand the nature of the cosmological constant and attempts
to extract the key ingredients which must be present in any viable solution. I
argue that (i)the cosmological constant problem cannot be satisfactorily solved
until gravitational action is made invariant under the shift of the matter
lagrangian by a constant and (ii) this cannot happen if the metric is the
dynamical variable. Hence the cosmological constant problem essentially has to
do with our (mis)understanding of the nature of gravity. Part 3 discusses an
alternative perspective on gravity in which the action is explicitly invariant
under the above transformation. Extremizing this action leads to an equation
determining the background geometry which gives Einstein's theory at the lowest
order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy,
edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
- …
