958 research outputs found
Electrophysiological indices of target and distractor processing in visual search
Attentional selection of a target presented among distractors can be indexed with an event-related potential (ERP) component known as the N2pc. Theoretical interpretation of the N2pc has suggested that it reflects a fundamental mechanism of attention that shelters the cortical representation of targets by suppressing neural activity stemming from distractors. Results from fields other than human electrophysiology, however, suggest that attention does not act solely through distractor suppression; rather, it modulates the processing of both target and distractors. We conducted four ERP experiments designed to investigate whether the N2pc reflects multiple attentional mechanisms. Our goal was to reconcile ostensibly conflicting outcomes obtained in electrophysiological studies of attention with those obtained using other methodologies. Participants viewed visual search arrays containing one target and one distractor. In Experiments 1 through 3, the distractor was isoluminant with the background, and therefore, did not elicit early lateralized ERP activity. This work revealed a novel contralateral ERP component that appears to reflect direct suppression of the cortical representation of the distractor. We accordingly name this component the distractor positivity (
Spin Excitations in La2CuO4: Consistent Description by Inclusion of Ring-Exchange
We consider the square lattice Heisenberg antiferromagnet with plaquette ring
exchange and a finite interlayer coupling leading to a consistent description
of the spin-wave excitation spectrum in La2CuO4. The values of the in-plane
exchange parameters, including ring-exchange J_{\Box}, are obtained
consistently by an accurate fit to the experimentally observed in-plane
spin-wave dispersion, while the out-of-plane exchange interaction is found from
the temperature dependence of the sublattice magnetization at low temperatures.
The fitted exchange interactions J=151.9 meV and J_{\Box}=0.24 J give values
for the spin stiffness and the Neel temperature in excellent agreement with the
experimental data.Comment: 4 pages, 1 figure, RevTe
Semiquantitative theory of electronic Raman scattering from medium-size quantum dots
A consistent semiquantitative theoretical analysis of electronic Raman
scattering from many-electron quantum dots under resonance excitation
conditions has been performed. The theory is based on
random-phase-approximation-like wave functions, with the Coulomb interactions
treated exactly, and hole valence-band mixing accounted for within the
Kohn-Luttinger Hamiltonian framework. The widths of intermediate and final
states in the scattering process, although treated phenomenologically, play a
significant role in the calculations, particularly for well above band gap
excitation. The calculated polarized and unpolarized Raman spectra reveal a
great complexity of features and details when the incident light energy is
swept from below, through, and above the quantum dot band gap. Incoming and
outgoing resonances dramatically modify the Raman intensities of the single
particle, charge density, and spin density excitations. The theoretical results
are presented in detail and discussed with regard to experimental observations.Comment: Submitted to Phys. Rev.
Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space
We investigate transverse electromagnetic waves propagating in a plasma in
the de Sitter space. Using the 3+1 formalism we derive the relativistic
two-fluid equations to take account of the effects due to the horizon and
describe the set of simultaneous linear equations for the perturbations. We use
a local approximation to investigate the one-dimensional radial propagation of
Alfv\'en and high frequency electromagnetic waves and solve the dispersion
relation for these waves numerically.Comment: 19 pages, 12 figure
Nondissipative Drag Conductance as a Topological Quantum Number
We show in this paper that the boundary condition averaged nondissipative
drag conductance of two coupled mesoscopic rings with no tunneling, evaluated
in a particular many-particle eigenstate, is a topological invariant
characterized by a Chern integer. Physical implications of this observation are
discussed.Comment: 4 pages, no figure. Title modified and significant revision made to
the text. Final version appeared in PR
Matrix Models, Geometric Engineering and Elliptic Genera
We compute the prepotential of N=2 supersymmetric gauge theories in four
dimensions obtained by toroidal compactifications of gauge theories from 6
dimensions, as a function of Kahler and complex moduli of T^2. We use three
different methods to obtain this: matrix models, geometric engineering and
instanton calculus. Matrix model approach involves summing up planar diagrams
of an associated gauge theory on T^2. Geometric engineering involves
considering F-theory on elliptic threefolds, and using topological vertex to
sum up worldsheet instantons. Instanton calculus involves computation of
elliptic genera of instanton moduli spaces on R^4. We study the
compactifications of N=2* theory in detail and establish equivalence of all
these three approaches in this case. As a byproduct we geometrically engineer
theories with massive adjoint fields. As one application, we show that the
moduli space of mass deformed M5-branes wrapped on T^2 combines the Kahler and
complex moduli of T^2 and the mass parameter into the period matrix of a genus
2 curve.Comment: 90 pages, Late
Electronic excitations and the tunneling spectra of metallic nanograins
Tunneling-induced electronic excitations in a metallic nanograin are
classified in terms of {\em generations}: subspaces of excitations containing a
specific number of electron-hole pairs. This yields a hierarchy of populated
excited states of the nanograin that strongly depends on (a) the available
electronic energy levels; and (b) the ratio between the electronic relaxation
rate within the nano-grain and the bottleneck rate for tunneling transitions.
To study the response of the electronic energy level structure of the nanograin
to the excitations, and its signature in the tunneling spectrum, we propose a
microscopic mean-field theory. Two main features emerge when considering an Al
nanograin coated with Al oxide: (i) The electronic energy response fluctuates
strongly in the presence of disorder, from level to level and excitation to
excitation. Such fluctuations produce a dramatic sample dependence of the
tunneling spectra. On the other hand, for excitations that are energetically
accessible at low applied bias voltages, the magnitude of the response,
reflected in the renormalization of the single-electron energy levels, is
smaller than the average spacing between energy levels. (ii) If the tunneling
and electronic relaxation time scales are such as to admit a significant
non-equilibrium population of the excited nanoparticle states, it should be
possible to realize much higher spectral densities of resonances than have been
observed to date in such devices. These resonances arise from tunneling into
ground-state and excited electronic energy levels, as well as from charge
fluctuations present during tunneling.Comment: Submitted to the Physical Review
Morphological and biochemical systematics of Australian freshwater and estuarine fishes of the family Percichthyidae
The taxonomy and evolutionary relationships of six
Australian species of the family Percichthyidae have been
investigated using data obtained from comparative morphological
examination of preserved specimens and from
electrophoretic detection of variation in proteins extracted
from liver and muscle tissue.
Members of the genera Maaaulloahella, Pleatroplites
Maaquaria and Peraalates form a group of generalised percoid
species that have presumably colonised Australian freshwaters
from marine origins. On morphological grounds the group is
here considered to belong in the basal percoid family
Percichthyidae rather than in the specialised family
Serranidae to which it has been previously assigned. Some
doubt remains, however, as to the affinities of the genus
Maaaulloahella.
Evidence from morphological studies, and from electrophoretic
analysis of protein variation at 19 genetic loci,
indicates that Maaaulloahella differs extensively from the
other genera and that the two subgroups so formed represent
separate invasions of freshwaters by already distinct marine
ancestors. The Australian genera Pleatroplites, Maaquaria
and Peraalates form a closely related monophyletic group
which could be assigned to a single genus. The oldest
available name for such a genus is Maaquaria Cuvier and
Valencieenes, 1830.
Morphological and electrophoretic evidence supports the
distinction of two species of Maaaulloahella, but no
significant variation was detected between Peraalates specimens initially identified as either P.
~
conolorum or P.
novemaculeatus.
Geographically separated conspecific populations of
Plectroplites ambiguus exhibit a clinal increase in degree
of morphological variation which corresponds to increasing
geographical distance between the populations compared.
Within this clinal pattern there is a clear distinction
between the populations of the Murray-Darling drainage area
and the internal drainage area populations of the Bulloo
and Wilson river. Up to 50 per cent of the 32 morphometric
and meristic characters examined showed significant variation
between populations from these two areas.
Electrophoretic data does not reflect a corresponding
degree of genetic divergence between Plectroplites ambiguus
populations, but the polymorphic glucose phosphate isomerase-1
~ locus revelas a clinal variation pattern similar to that
obtained from the morphological studies. It is considered,
however, that the morphological and electrophoretic variation
observed in Plectroplites ambiguus populations is not
sufficient to indicate the existence of distinct subspecies
or species.
Macquaria australasica populations exhibit similar
amounts of morphological divergence to Plectroplites ambiguus
populations. This variation was not found to have an ordered
pattern of geographical distribution, although there is so1ne
indication of a distinction between Macquaria australasica
populations from either side of the Great Dividing Range
PRECISE DETERMINATION OF URANIUM IN URANYL NITRATE-ALUMINUM NITRATE SOLUTIONS
A method was developed for the determination of uranium in aqueous solutions that contain aluminum and in tributyl phosphate. Uranium was separated from aluminum by an ion exchange technique and was then determined gravimetrically by the 8-hydroxyquinoline method. The coefficient of variation was O.3%. (auth
Plasma Wave Properties of the Schwarzschild Magnetosphere in a Veselago Medium
We re-formulate the 3+1 GRMHD equations for the Schwarzschild black hole in a
Veselago medium. Linear perturbation in rotating (non-magnetized and
magnetized) plasma is introduced and their Fourier analysis is considered. We
discuss wave properties with the help of wave vector, refractive index and
change in refractive index in the form of graphs. It is concluded that some
waves move away from the event horizon in this unusual medium. We conclude that
for the rotating non-magnetized plasma, our results confirm the presence of
Veselago medium while the rotating magnetized plasma does not provide any
evidence for this medium.Comment: 20 pages, 15 figures, accepted for publication in Astrophys. Space
Sc
- …
