2,064 research outputs found
Submodular memetic approximation for multiobjective parallel test paper generation
Parallel test paper generation is a biobjective distributed resource optimization problem, which aims to generate multiple similarly optimal test papers automatically according to multiple user-specified assessment criteria. Generating high-quality parallel test papers is challenging due to its NP-hardness in both of the collective objective functions. In this paper, we propose a submodular memetic approximation algorithm for solving this problem. The proposed algorithm is an adaptive memetic algorithm (MA), which exploits the submodular property of the collective objective functions to design greedy-based approximation algorithms for enhancing steps of the multiobjective MA. Synergizing the intensification of submodular local search mechanism with the diversification of the population-based submodular crossover operator, our algorithm can jointly optimize the total quality maximization objective and the fairness quality maximization objective. Our MA can achieve provable near-optimal solutions in a huge search space of large datasets in efficient polynomial runtime. Performance results on various datasets have shown that our algorithm has drastically outperformed the current techniques in terms of paper quality and runtime efficiency
Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films
Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition in the film from a tetragonal to cubic symmetry. At low thickness, the in-plane tensile stress induces a tetragonal distortion of the lattice that generates a perpendicular anisotropy, large enough to overcome the shape anisotropy and to stabilize the magnetization easy axis out of plane. However, in thicker films, the lattice relaxation toward the cubic structure of the bulk allows the shape anisotropy to force the magnetization to be in plane aligned
Morphology of the archaellar motor and associated cytoplasmic cone in Thermococcus kodakaraensis
Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frustum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome‐excluding material and may function as a polar organizing center for the coccoid cells
Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion
We consider the extended Hubbard model with attractive on-site interaction U
and nearest-neighbor repulsions V. We construct an effective Hamiltonian
H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms,
H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The
quantum phase diagram shows two Luttinger liquid phases and a region of phase
separation between them. For density n<0.422 and U<-4, singlet superconducting
correlations dominate at large distances. For some parameters, the results are
in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
Vortex structure in d-density wave scenario of pseudogap
We investigate the vortex structure assuming the d-density wave scenario of
the pseudogap. We discuss the profiles of the order parameters in the vicinity
of the vortex, effective vortex charge and the local density of states. We find
a pronounced modification of these quantities when compared to a purely
superconducting case. Results have been obtained for a clean system as well as
in the presence of a nonmagnetic impurity. We show that the competition between
superconductivity and the density wave may explain some experimental data
recently obtained for high-temperature superconductors. In particular, we show
that the d-density wave scenario explains the asymmetry of the gap observed in
the vicinity of the vortex core.Comment: 8 pages, 10 figure
Nothophytophthora gen. nov., a new sister genus of Phytophthora from natural and semi-natural ecosystem
During various surveys of Phytophthora diversity in Europe, Chile and Vietnam slow growing oomycete
isolates were obtained from rhizosphere soil samples and small streams in natural and planted forest stands.
Phylogenetic analyses of sequences from the nuclear ITS, LSU, β-tubulin and HSP90 loci and the mitochondrial
cox1 and NADH1 genes revealed they belong to six new species of a new genus, officially described here as
Nothophytophthora gen. nov., which clustered as sister group to Phytophthora. Nothophytophthora species share
numerous morphological characters with Phytophthora: persistent (all Nothophytophthora spp.) and caducous
(N. caduca, N. chlamydospora, N. valdiviana, N. vietnamensis) sporangia with variable shapes, internal differentiation
of zoospores and internal, nested and extended (N. caduca, N. chlamydospora) and external (all Nothophytophthora
spp.) sporangial proliferation; smooth-walled oogonia with amphigynous (N. amphigynosa) and paragynous
(N. amphigynosa, N. intricata, N. vietnamensis) attachment of the antheridia; chlamydospores (N. chlamydospora)
and hyphal swellings. Main differing features of the new genus are the presence of a conspicuous, opaque plug
inside the sporangiophore close to the base of most mature sporangia in all known Nothophytophthora species and
intraspecific co-occurrence of caducity and non-papillate sporangia with internal nested and extended proliferation
in several Nothophytophthora species. Comparisons of morphological structures of both genera allow hypotheses
about the morphology and ecology of their common ancestor which are discussed. Production of caducous sporangia
by N. caduca, N. chlamydospora and N. valdiviana from Valdivian rainforests and N. vietnamensis from a
mountain forest in Vietnam suggests a partially aerial lifestyle as adaptation to these humid habitats. Presence of
tree dieback in all forests from which Nothophytophthora spp. were recovered and partial sporangial caducity of
several Nothophytophthora species indicate a pathogenic rather than a saprophytic lifestyle. Isolation tests from
symptomatic plant tissues in these forests and pathogenicity tests are urgently required to clarify the lifestyle of the
six Nothophytophthora species.info:eu-repo/semantics/publishedVersio
Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils
The development of BiPo detectors is dedicated to the measurement of
extremely high radiopurity in Tl and Bi for the SuperNEMO
double beta decay source foils. A modular prototype, called BiPo-1, with 0.8
of sensitive surface area, has been running in the Modane Underground
Laboratory since February, 2008. The goal of BiPo-1 is to measure the different
components of the background and in particular the surface radiopurity of the
plastic scintillators that make up the detector. The first phase of data
collection has been dedicated to the measurement of the radiopurity in
Tl. After more than one year of background measurement, a surface
activity of the scintillators of (Tl) 1.5
Bq/m is reported here. Given this level of background, a larger BiPo
detector having 12 m of active surface area, is able to qualify the
radiopurity of the SuperNEMO selenium double beta decay foils with the required
sensitivity of (Tl) 2 Bq/kg (90% C.L.) with a six
month measurement.Comment: 24 pages, submitted to N.I.M.
Magnetic Order in YBaCuO Superconductors
Polarized and unpolarized neutron diffraction has been used to search for
magnetic order in YBaCuO superconductors. Most of the
measurements were made on a high quality crystal of YBaCuO. It
is shown that this crystal has highly ordered ortho-II chain order, and a sharp
superconducting transition. Inelastic scattering measurements display a very
clean spin-gap and pseudogap with any intensity at 10 meV being 50 times
smaller than the resonance intensity. The crystal shows a complicated magnetic
order that appears to have three components. A magnetic phase is found at high
temperatures that seems to stem from an impurity with a moment that is in the
- plane, but disordered on the crystal lattice. A second ordering occurs
near the pseudogap temperature that has a shorter correlation length than the
high temperature phase and a moment direction that is at least partly along the
c-axis of the crystal. Its moment direction, temperature dependence, and Bragg
intensities suggest that it may stem from orbital ordering of the -density
wave (DDW) type. An additional intensity increase occurs below the
superconducting transition. The magnetic intensity in these phases does not
change noticeably in a 7 Tesla magnetic field aligned approximately along the
c-axis. Searches for magnetic order in YBaCuO show no signal
while a small magnetic intensity is found in YBaCuO that is
consistent with c-axis directed magnetic order. The results are contrasted with
other recent neutron measurements.Comment: 11 pages with 10 figure
- …
