1,742 research outputs found
Nonstationary lterated Tikhonov Regularization
A convergence rate is established for nonstationary iterated Tikhonov regularization, applied to ill-posed problems involving closed, densely defined linear operators, under general conditions on the iteration parameters. lt is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number
Functional Methods in Stochastic Systems
Field-theoretic construction of functional representations of solutions of
stochastic differential equations and master equations is reviewed. A generic
expression for the generating function of Green functions of stochastic systems
is put forward. Relation of ambiguities in stochastic differential equations
and in the functional representations is discussed. Ordinary differential
equations for expectation values and correlation functions are inferred with
the aid of a variational approach.Comment: Plenary talk presented at Mathematical Modeling and Computational
Science. International Conference, MMCP 2011, Star\'a Lesn\'a, Slovakia, July
4-8, 201
Ground state of a polydisperse electrorheological solid: Beyond the dipole approximation
The ground state of an electrorheological (ER) fluid has been studied based
on our recently proposed dipole-induced dipole (DID) model. We obtained an
analytic expression of the interaction between chains of particles which are of
the same or different dielectric constants. The effects of dielectric constants
on the structure formation in monodisperse and polydisperse electrorheological
fluids are studied in a wide range of dielectric contrasts between the
particles and the base fluid. Our results showed that the established
body-centered tetragonal ground state in monodisperse ER fluids may become
unstable due to a polydispersity in the particle dielectric constants. While
our results agree with that of the fully multipole theory, the DID model is
much simpler, which offers a basis for computer simulations in polydisperse ER
fluids.Comment: Accepted for publications by Phys. Rev.
The quantitative soil pit method for measuring belowground carbon and nitrogen stocks
Many important questions in ecosystem science require estimates of stocks of soil C and nutrients. Quantitative soil pits provide direct measurements of total soil mass and elemental content in depth-based samples representative of large volumes, bypassing potential errors associated with independently measuring soil bulk density, rock volume, and elemental concentrations. The method also allows relatively unbiased sampling of other belowground C and nutrient stocks, including roots, coarse organic fragments, and rocks. We present a comprehensive methodology for sampling these pools with quantitative pits and assess their accuracy, precision, effort, and sampling intensity as compared to other methods. At 14 forested sites in New Hampshire, nonsoil belowground pools (which other methods may omit, double-count, or undercount) accounted for upward of 25% of total belowground C and N stocks: coarse material accounted for 4 and 1% of C and N in the O horizon; roots were 11 and 4% of C and N in the O horizon and 10 and 3% of C and N in the B horizon; and soil adhering to rocks represented 5% of total B-horizon C and N. The top 50 cm of the C horizon contained the equivalent of 17% of B-horizon carbon and N. Sampling procedures should be carefully designed to avoid treating these important pools inconsistently. Quantitative soil pits have fewer sources of systematic error than coring methods; the main disadvantage is that because they are time-consuming and create a larger zone of disturbance, fewer observations can be made than with cores
Two-level Hamiltonian of a superconducting quantum point contact
In a superconducting quantum point contact, dynamics of the superconducting
phase is coupled to the transitions between the subgap states. We compute this
coupling and derive the two-level Hamiltonian of the contact.Comment: REVTeX, 5 pages, reference adde
Loop Quantum Cosmology, Boundary Proposals, and Inflation
Loop quantum cosmology of the closed isotropic model is studied with a
special emphasis on a comparison with traditional results obtained in the
Wheeler-DeWitt approach. This includes the relation of the dynamical initial
conditions with boundary conditions such as the no-boundary or the tunneling
proposal and a discussion of inflation from quantum cosmology.Comment: 20 pages, 6 figure
Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus
Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but not SV40 LT. hVam6p binds through its clathrin heavy chain homology domain to a unique region of MCV LT adjacent to the retinoblastoma binding site. MCV LT translocates hVam6p to the nucleus, sequestering it from involvement in lysosomal trafficking. A naturally occurring, tumor-derived mutant LT (MCV350) lacking a nuclear localization signal binds hVam6p but fails to inhibit hVam6p-induced lysosomal clustering. MCV has evolved a novel mechanism to target hVam6p that may contribute to viral uncoating or egress through lysosomal processing during virus replication
Ratios of and Meson Decay Constants in Relativistic Quark Model
We calculate the ratios of and meson decay constants by applying the
variational method to the relativistic hamiltonian of the heavy meson. We adopt
the Gaussian and hydrogen-type trial wave functions, and use six different
potentials of the potential model. We obtain reliable results for the ratios,
which are similar for different trial wave functions and different potentials.
The obtained ratios show the deviation from the nonrelativistic scaling law,
and they are in a pretty good agreement with the results of the Lattice
calculations.Comment: 13 pages, 1 Postscript figur
Paul Bunyan and His Blue Ox, Babe
American mythology has no epic hero whose deeds and achievements can in any way compare with the exploits of the great Paul Bunyan, the patron saint of the foresters. His fame rests secure in the tales of the thousands of leather-throated lumberjacks who worked under the great Paul during the bonanza days of the great forests
PAUL BUNYON
The hush of evening quieted the restless waters of Pelican lake. The sweetly melancholy song of the Hermit Thrush far away in the deep green of pine and balsam. drifted faintly across the rice covered bay announcing the angelus hour of the forest. I ceased my paddling and sat in silent reverence gazing on the flaming crimson of the western sky which silhouetted the slender cathedral spires of the spruces. Suddenly a loud halloo disturbed my reverie and turning quickly I say a grizzled man of enormous stature standing on the rocky shore
- …
